Spatial and seasonal variability of the vertical distribution of chlorophyll A concentration in the Southern Ocean from Bio-Argo data
- Autores: Kubryakova E.A.1,2, Bakueva Y.I.1, Kubryakov A.A.1
-
Afiliações:
- Marine Hydrophysical Institute, Russian Academy of Sciences
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Edição: Volume 65, Nº 1 (2025)
- Páginas: 102-116
- Seção: Морская биология
- URL: https://journal-vniispk.ru/0030-1574/article/view/296288
- DOI: https://doi.org/10.31857/S0030157425010087
- EDN: https://elibrary.ru/DPOJHQ
- ID: 296288
Citar
Resumo
Measurements of 119 Bio-Argo buoys for 2010–2021 are used to study the spatial and temporal variability of the vertical distribution of chlorophyll A (Chl) concentration in various areas of the Southern Ocean. The results show that the variability of Chl is significantly influenced by two physical mechanisms of macronutrient supply, separated in time and space. In the Antarctic summer (January-March), the maximum increase in Chl is observed in three areas of intense offshore fluxes of melting ice from Antarctica (Weddell Sea, Amundsen Sea and the eastern part of the Indian Ocean sector). The greatest increase is recorded in the upper layer of 0–50m, with a maximum in the western part of the Atlantic sector of the Southern Ocean. The minimum values during this period in the upper layer are observed in the central part of the Pacific and Indian oceans. In the Antarctic spring (October-December), the maximum integral Chl values are concentrated in the cyclonic shear zone on the southern periphery of the Antarctic Circumpolar Current. The greatest increase is recorded in the 50–100 m layer, corresponding to the lower part of the subsurface Chl peak, which is presumably associated with the vertical rise of nutrients in this zone. It is also shown that in areas of the highest concentration of Chl, its subsurface maximum is situated closer to the surface, and in the deep layers Chl sharply decreases. In the central part of the oceans with relatively low Chl values in the upper layer, the subsurface peak is deeper (50–70m) and Chl values in the deep layers are higher. Here the seasonal cycle is less pronounced and Chl is more evenly distributed in depth.
Sobre autores
E. Kubryakova
Marine Hydrophysical Institute, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: arskubr@ya.ru
Rússia, Sevastopol; Moscow
Y. Bakueva
Marine Hydrophysical Institute, Russian Academy of Sciences
Email: arskubr@ya.ru
Rússia, Sevastopol
A. Kubryakov
Marine Hydrophysical Institute, Russian Academy of Sciences
Autor responsável pela correspondência
Email: arskubr@ya.ru
Rússia, Sevastopol
Bibliografia
- Бакуева Я.И., Кубрякова Е.А., Кубряков А.А. Особенности сезонной изменчивости концентрации хлорофилла “а” в различных регионах Южной Атлантики по спутниковым данным // Морской гидрофизический журнал. 2023. № 39(1). C. 31–51.
- Демидов А.Б., Ведерников В.И., Шеберстов С.В. Пространственно-временная изменчивость хлорофилла “а” в Атлантическом и Индийском секторах южного океана в феврале 2000 г. по спутниковым и экспедиционным данным // Океанология. 2007. Т. 47. № . 4. С. 546–558.
- Демидов А.Б., Гагарин В.И., Григорьев А.В. Сезонная изменчивость хлорофилла “а” на поверхности в проливе Дрейка // Океанология. 2010. Т. 50. № 3. С. 355–370.
- Демидов А.Б., Мошаров С.А., Гагарин В.И. Меридиональная асимметричность первичного продуцирования в атлантическом секторе южного океана весной и летом. // Океанология. 2012. Т. 52(5). С. 675–675.
- Чурин Д.А., Гулюгин С.Ю. Сезонность вертикального распределения хлорофилла а в субширотных зонах Антарктической части Атлантики по данным прямых и дистанционных наблюдений // Труды ВНИРО. 2018. Т. 173. С. 92–105.
- Arrigo K.R., Van Dijken G.L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. // Journal of Geophysical Research: Oceans. 2003. V. 108(C8). https://doi.org/10.1029/2002JC001739
- Arrigo K.R., van Dijken G.L., Bushinsky S. Primary production in the Southern Ocean, 1997–2006 // Journal of Geophysical Research: Oceans. 2008. V. 113. № C 8. https://doi.org/10.1029/2007JC004551
- Banse K. Low seasonality of low concentrations of surface chlorophyll in the Subantarctic water ring: underwater irradiance, iron, or grazing? // Progress in oceanography. 1996. V. 37. № . 3–4. P. 241–291. https://doi.org/10.1016/S0079-6611(96)00006-7
- Bowie A.R., Van Der Merwe P., Quéroué F. et al. Iron budgets for three distinct biogeochemical sites around the Kerguelen Archipelago (Southern Ocean) during the natural fertilisation study. // KEOPS-2. Biogeosciences. 2015. V. 12(14). P. 4421–4445. https://doi.org/10.5194/bg-12–4421–2015
- Boyd P.W., Watson A.J., Law C.S. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization // Nature. 2000. V. 407(6805). P. 695–702.
- Carranza M.M., Gille S.T. Southern Ocean wind‐driven entrainment enhances satellite chlorophyll‐a through the summer // Journal of Geophysical Research: Oceans. 2015. V. 120(1). P. 304–323.
- De Baar H.J., Boyd P.W., Coale K.H. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment // Journal of Geophysical Research: Oceans. 2005. V. 110(C9).
- Deppeler S.L., Davidson A.T. Southern Ocean phytoplankton in a changing climate. // Frontiers in Marine Science. 2017. V. 4. P. 40. https://doi.org/10.3389/fmars.2017.00040
- Dong S., Sprintall J., Gille S.T. et al. Southern Ocean mixed‐layer depth from Argo float profiles // Journal of Geophysical Research: Oceans. 2008. V. 113(C6).
- Falkowski P.G., Raven J.A. Aquatic photosynthesis // Princeton University Press. 2013.
- Hense I., Bathmann U.V., Timmermann R. Plankton dynamics in frontal systems of the Southern Ocean // Journal of Marine Systems. 2000. Vol. 27(1–3). P. 235–252.
- Kwok R., Pang S.S., Kacimi S. Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends. Elem Sci Anth. 2017. Vol. 5. P. 32.
- Llort J., Lévy M., Sallée J.B. et al. Nonmonotonic response of primary production and export to changes in mixed‐layer depth in the Southern Ocean // Geophysical Research Letters. 2019. V. 46(6). P. 3368–3377.
- Martin J.H., Fitzwater S.E., Gordon R.M. Iron deficiency limits phytoplankton growth in Antarctic waters // Global Biogeochemical Cycles. 1990. V. 4(1). P. 5–12.
- Minas H.J., Minas M. Net community production in High nutrient-low chlorophyll waters of the tropical and Antarctic oceans-grazing vs iron hypothesis // Oceanologica Acta. 1992. V. 15(2). P. 145–162.
- Mongin M.M., Abraham E.R., Trull T.W. Winter advection of iron can explain the summer phytoplankton bloom that extends 1000 km downstream of the Kerguelen Plateau in the Southern Ocean // Journal of Marine Research. 2009. V. 67(2). P. 225–237.
- Moore J.K., Abbott M.R. Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations // Journal of Marine Systems. 2002. V. 37. № . 1–3. P. 69–86. https://doi.org/10.1016/S0924–7963(02)00196–3
- Mulet S., Rio M.H., Etienne H. et al. The new CNES-CLS18 global mean dynamic topography. Ocean Science. 2021. V. 17(3). P. 789–808.
- Prend C.J., Gille S.T., Talley L.D. et al. Physical drivers of phytoplankton bloom initiation in the Southern Ocean's Scotia Sea // Journal of Geophysical Research: Oceans. 2019. V. 124. № . 8. P. 5811–5826. https://doi.org/10.1029/2019JC015162
- Rienecker M.M., Suarez M.J., Gelaro R. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications // Journal of climate. 2011. V. 24(14). P. 3624–3648.
- Sallée J.B., Llort J., Tagliabue A. et al. Characterization of distinct bloom phenology regimes in the Southern Ocean // ICES Journal of Marine Science. 2015. V. 72. № . 6. P. 1985–1998. https://doi.org/10.1093/icesjms/fsv069
- Sarmiento J.L., Johnson K.S., Arteaga L.A. et al. The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: A review // Progress in Oceanography. 2023. P. 103130.
- Sokolov S., Rintoul S.R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean // Journal of Geophysical Research: Oceans. 2007. V. 112. № C7. https://doi.org/10.1029/2006JC004072
- Sullivan C.W., Arrigo K.R., McClain C.R. et al. Distributions of phytoplankton blooms in the Southern Ocean // Science. 1993. V. 262(5141). P. 1832–1837.
- Sverdrup H.U. On conditions for the vernal blooming of phytoplankton // J. Cons. Int. Explor. Mer. 1953. V. 18(3). P. 287–295.
- Tagliabue A., Bopp L., Aumont O. Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry // Geophysical Research Letters. 2009. V. 36(13).
- Tagliabue A., Mtshali T., Aumont O. et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean // Biogeosciences. 2012. V. 9(6). P. 2333–2349.
- Taylor M.H., Losch M., Bracher A. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach // Journal of Geophysical Research: Oceans. 2013. V. 118(1). P. 63–75.
- Thomalla S.J., Fauchereau N., Swart S. et al. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. // Biogeosciences. 2011. V. 8(10). P. 2849–2866. https://doi.org/10.5194/bg-8-2849-2011
- Tournadre J., Bouhier N., Girard‐Ardhuin F. et al. Antarctic icebergs distributions 1992–2014 // Journal of Geophysical Research: Oceans. 2016. V. 121(1). P. 327–349.
- Uchida T., Balwada D., Abernathey R. et al. Southern Ocean phytoplankton blooms observed by biogeochemical floats // Journal of Geophysical Research: Oceans. 2019. V.124(11). P. 7328–7343.
- Xing J., Wei H., Guo E.J. et al. Highly sensitive fast-response UV photodetectors based on epitaxial TiO2 films // Journal of Physics D: Applied Physics. 2011. V. 44(37), P. 375104.
Arquivos suplementares
