Estimating of changes in the volume of sandy beach during a storm
- Authors: Leont’yev I.O.1
-
Affiliations:
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Issue: Vol 65, No 1 (2025)
- Pages: 169-180
- Section: Морская геология
- URL: https://journal-vniispk.ru/0030-1574/article/view/296296
- DOI: https://doi.org/10.31857/S0030157425010138
- EDN: https://elibrary.ru/DPCMKU
- ID: 296296
Cite item
Abstract
An approach is proposed for predicting storm-induced changes in subaerial volume of a sandy beach based on the author’s model of sediment transport in the swash zone. Input parameters in the model are the mean sand size, the slope of the beach and a chronogram of heights and periods of waves in deep water. To calibrate the model, published data from experiments in wave channels were used. Verification of the model was based on the published data from field observations. It is shown that on profiles with a developed system of nearshore bars, beach changes are small even during strong, prolonged storms, while on shores without bars or with one bar, storm erosion is measured in tens of cubic meters per meter of shore. From the calculations it follows that in the intensifying phase of the storm, the slope and volume of the beach decrease, and in the attenuation phase, on the contrary, they increase. Adaptation to external influences occurs with a certain time lag. Changes to the beach under the influence of two successive storms of approximately equal strength are largely determined by the first of them. The root mean square error of the calculations ranges from 11 to 24% relative to the average value of recorded changes in beach volume.
About the authors
I. O. Leont’yev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Author for correspondence.
Email: igor.leontiev@gmail.com
Russian Federation, Moscow
References
- Леонтьев И.О. Прибрежная динамика: волны, течения, потоки наносов. М.: ГЕОС, 2001. 272 с.
- Леонтьев И.О. Морфодинамические процессы в береговой зоне моря. LAP LAMBERT Academic Publishing. Saarbrücken, 2014. 251 c.
- Леонтьев И.О. О расчете вдольберегового транспорта наносов // Океанология. 2014. Т. 54. № 2. С. 226–232. https://doi.org/10.7868/S0030157414020130
- Леонтьев И.О., Рябчук Д.В., Сергеев А.Ю. Моделирование штормовых деформаций песчаного берега (на примере восточной части Финского залива) // Океанология. 2015. Т. 55. № 1. С. 147–158. https://doi.org/10.7868/S0030157414060069
- Леонтьев И.О. Оценка опасности штормовых размывов песчаного берега // Океанология. 2021. Т. 61. № 2. С. 286–294. https://doi.org/10.31857/S0030157421020118
- Леонтьев И.О. Абразия берега, сложенного рыхлым материалом // Океанология. 2022. Т. 62. № 1. С. 125–134. https://doi.org/10.31857/S0030157422010087
- Лонгинов В.В. Динамика береговой зоны бесприливных морей. М.: Изд-во АН СССР, 1963. 379 с.
- Aagaard T., Nielsen J., Greenwood B. Suspended sediment transport and nearshore bar formation on a shallow intermediate-state beach // Marine Geology. 1998. V. 148. P. 203–225.
- Bagnold R.A. Mechanics of marine sedimentation // The Sea. V. 3. N.-Y.: Wiley, 1963. P. 507–528.
- Baldock T., Alsina J., Càceres I. et al. Large-scale experiments on beach profile evolution and swash zone sediment transport induced by long waves, wave groups and random waves // Coastal Engineering. 2011. V. 58. P. 214–227.
- Blenkinsopp C.E., Turner I.L., Masselink G., Russell P.E. Swash zone sediment fluxes: field observations // Coastal Engineering. 2011. V. 58. P. 28–44. https://doi.org/10.1016/j.coastaleng.2010.08.002
- Càceres I., Alsina J.M. Suspended sediment transport and beach dynamics induced by monochromatic conditions, long waves and wave groups // Coastal Engineering. 2016. V. 108. P. 36–55. https://doi.org/10.1016/j.coastaleng.2015.11.004
- Chardón-Maldonado P., Pintado-Pati o J.C., Puleo J.A. Advances in swash-zone research: small-scale hydrodynamic and sediment transport processes // Coastal Engineering. 2016. V. 115. P. 8–25. https://doi.org/10.1016/j.coastaleng.2015.10.008
- Chen W., van der Werf J.J., Hulcsher S.J.M.H. Practical modelling of sand transport and beach profile evolution in the swash zone // Coastal Engineering. 2024. V. 191. https://doi.org/10.1016/j.coastaleng.2024.104514
- Eichentopf S., Càceres I., Alsina J.M. Breaker bar morphodynamics under erosive and accretive wave conditions in large-scale experiments // Coastal Engineering. 2018. V. 138. P. 36–48. https://doi.org/10.1016/j.coastaleng.2018.04.010
- Karambas T.V. Prediction of sediment transport in the swash-zone by using a nonlinear wave model // Continent. Shelf Res. 2006. V. 26. P. 599–609. https://doi.org/10.1016/j.csr.2006.01.014
- Larson M., Kraus N.C. SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89–9. 1989. US Army Eng. Waterw. Exp. Station. Coastal Eng. Res. Center.
- Larson M., Kubota S., Erikson L. Swash-zone sediment transport and foreshore evolution: field experiments and mathematical modeling // Mar. Geol. 2004. V. 212. P. 61–79. https://doi.org/10.1016/j.margeo.2004.08.004
- Larson M., Palalane J., Fredriksson C., Hanson H. Simulating cross-shore material exchange at decadal scale. Theory and model component validation // Coastal Engineering. 2016. V. 116. P. 57–66. https://doi.org/10.1016/j.coastaleng.2016.05.009
- Leont’yev I.O. Numerical modelling of beach erosion during storm event // Coastal Engineering. 1996. V. 47. P. 413–429.
- Leont’yev I.O., Akivis T.M. Erosion Index for Assessing Vulnerability of Sandy Beach // Processes in GeoMedia – V. VI. Springer Geology / T. Chaplina (ed.). 2023. P. 19–32. https://doi.org/10.1007/978-3-031-16575-7
- Stockdon H.F., Holman R.A., Howd P.A., Sallenger A.H. Empirical parameterization of setup, swash, and runup // Coastal Engineering. 2006. V. 53. P. 573–588.
- Sunamura T. Sandy beach geomorphology elucidated by laboratory modeling // Applications in coastal modeling / Eds. Lakhan V.C., Trenhail A.S. Amsterdam: Elsevier, 1989. P. 159–213.
- Van Rijn L.C. Prediction of dune erosion due to storms // Coastal Engineering. 2009. V. 56. P. 441–457. https://doi.org/10.1016/j.coastaleng.2008.10.006
- Van Rijn L.C., Walstra D.J.R., Grasmeier B., Sutherland J., Pan S., Sierra J.P. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and season using process-based profile models // Coastal. Engineering. 2003. V. 47. P. 295–327.
- Van Rijn L.C., Tonnon P.K., Walstra D.J.R. Numerical modelling of erosion and accretion of plane sloping beaches at different scales // Coastal Engineering. 2011. V. 58. P. 637–655. https://doi.org/10.1016/j.coastaleng.2011.01.009
- Wise A., Smith S.J., Larson M. SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89–9. Report 4: Cross-shore transport under random waves and model validation with supertank and field data. US Army Corps of Engineers. 1996.
- Zheng J., Dean R.G. Numerical models and intercomparisons of beach profile evolutions // Coastal Engineering. 1997. V. 30. P. 169–201.
Supplementary files
