Растворенный неорганический углерод (δ13С(DIC), [DIC]) в водах западной части Берингова моря
- Авторы: Дубинина Е.О.1, Коссова С.А.1, Чижова Ю.Н.1, Авдеенко А.С.1
-
Учреждения:
- Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН
- Выпуск: Том 64, № 5 (2024)
- Страницы: 777-791
- Раздел: Химия моря
- URL: https://journal-vniispk.ru/0030-1574/article/view/281364
- DOI: https://doi.org/10.31857/S0030157424050045
- EDN: https://elibrary.ru/OFYHCL
- ID: 281364
Цитировать
Аннотация
Впервые получены данные об изотопном составе и концентрации растворенного неорганического углерода в водах западной части Берингова моря (районы Корякского шельфа и Чукотского континентального склона, Командорских о-вов, интервал глубин 10–4100 м). Величины [DIC] варьируют от 1900 μмоль/кг в летних водах Корякского шельфа до 2510 μмоль/кг в глубинных водах района Командорских островов. Величина δ13С(DIC) в продуктивных летних водах превышает +1‰, достигая +3.08‰ на Корякском шельфе. Глубина изотопного углеродного минимума (–0.7‰) составляет ≈ 500 м. С применением расчетов моделей, учитывающих физические процессы (изотопный обмен с СО2 атмосферы и консервативное смешение) установлено, что в основной толще вод δ13С(DIC) и [DIC] контролируются окислением органического вещества, тогда как преобладание в этом контроле первичной продукции имеет место только в поверхностных (<20 м) водах Берингова моря. Концентрации [DIC] возрастают до глубин ≈1000 м и остаются примерно постоянными (2430 ± 30 μмоль/кг), превышая уровень [DIC] в глубинных тихоокеанских водах. Предложена модель “физического углеродного насоса”, в котором основная роль в накоплении и перераспределении DIC в пределах водной толщи отводится зимним водам Берингова моря.
Полный текст

Об авторах
Е. О. Дубинина
Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН
Автор, ответственный за переписку.
Email: elenadelta@gmail.com
Россия, Москва
С. А. Коссова
Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН
Email: elenadelta@gmail.com
Россия, Москва
Ю. Н. Чижова
Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН
Email: elenadelta@gmail.com
Россия, Москва
А. С. Авдеенко
Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН
Email: elenadelta@gmail.com
Россия, Москва
Список литературы
- Дубинина Е.О., Коссова С.А., Мирошников А.Ю. и др. Растворенный неорганический углерод ([DIC], δ13С(DIC)) в водах восточной части Восточно-Сибирского моря // Геохимия. 2020. Т. 65. № 8 С. 731–751. https://doi.org/10.31857/S0016752520080051
- Дубинина Е.О., Коссова С.А., Осадчиев А.А. и др. Источники опреснения вод западной части Берингова моря по изотопным (δ18О, δD) данным // Океанология. 2024. В печати.
- Aagard K., Coachman L.K., Carmack E.C. On the halocline of the Arctic Ocean // Deep-Sea Research. 1981. V. 28. P. 529–545.
- Aksenov Y., Karcher M., Proshutinsky A. et al. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2016. V. 121. P. 27–59. https://doi.org/10.1002/2015JC011299.
- Alkire M.B., Morison J., Andersen R. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014 // J. Geophys. Res. Oceans. 2015. V. 120. P. 1573–1598. https://doi.org/10.1002/2014JC010023.
- Alling V., Porcelli D., Morth C.–M. et al. Degradation of terrestrial organic carbon, primary production and out–gassing of CO2 in the Laptev and East Siberian Seas as inferred from d13C values of DIC // Geochim. Cosmochim. Acta. 2012. V.95. P. 143–159.
- Anderson L.G., Olsson K., Chierici M. A carbon budget for the Arctic Ocean // Global Biogeochem. Cycles. 1998. V. 12. Is. 3. P. 455–465.
- Bauch D., Polyak L., Ortiz J.D. A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) in the Arctic Ocean // Arktos. 2015. V. 1. P. 15. https://doi.org/10.1007/s41063-015-0001-0
- Bacastow R., Keeling C.D., Lueker T.J. et al. The 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda // Global Biogeochem. Cycles. 1996. V. 10. P. 335–346.
- Bostock H.C., Opdyke B.N., Williams M.J.M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers // Deep Sea Res. Part I. 2010. V. 57. Is. 7. P. 847–859. https://doi.org/10.1016/j.dsr.2010.04.005
- Broecker W., Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the sea // Global Biogeochem. Cycles. 1992. V. 6. P. 315–320. https://doi.org/10.1029/92GB01672.
- Chu G., Luo X., Zheng Z. Causes of increased dissolved inorganic carbon in the subsurface layers in the western shelfbreak and high latitudes basin in the Arctic Pacific sector // Environ. Res. Lett. 2021. V. 16. P. 104008. https://doi.org/10.1088/1748–9326/ac2408
- Danielson S.L., Eisner L., Ladd C. et al. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas // Deep Sea Res. Part II. 2017. V. 135. P. 7–26.
- Danielson S.L., Weingartner T.J., Hedstrom K.S. et al. Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient // Progress in Oceanography. 2014. V. 125. P. 40–61. https://doi.org/10.1016/j.pocean.2014.04.006
- Dubinina E.O., Kossova S.A., Chizhova Yu.N. High-Precision Determination of Carbon Isotope Composition and Concentration of Dissolved Inorganic Carbon in Seawater. Geochemistry International. 2024. V. 62. N. 1. P. 45–54.
- Ekwurzel B., Schlosser P., Mortlock R.A. et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean // J. Geophys. Res. 2001. V. 106. P. 9075–9092.
- Feely R.A., Doney S.C., Cooley S.R. Ocean acidification: Present conditions and future changes in a high-CO2 world //Oceanography. 2009. V.22. P. 36–47. https://doi.org/10.5670/oceanog.2009.95
- Frey K.E., Kinney J.C., Stock L.V. et al. Observations of declining primary productivity in the western Bering strait // Oceanography. 2022. V.35. N.3–4. P. 140–143.
- Ge T., Luo C., Ren P. et al. Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics// Front. Mar. Sci. 2022. 9:998437. https://doi.org/10.3389/fmars.2022.998437
- Grebmeier J., Cooper L., Deniro M.J. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas // Limnol. Oceanogr. 1990. V. 35. P. 1182–1195.
- Gruber N., Keeling C.D., Bacastow R.B. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect // Global Biogeochem. Cycles. 1999. V. 13. P. 307–335.
- Hirawake T., Oida J., Yamashita Y. et al. Water mass distribution in the northern Bering and southern Chukchi seas using light absorption of chromophoric dissolved organic matter // Progress in Oceanography. 2021. V. 197. P. 102641. https://doi.org/10.1016/j.pocean.2021.102641
- Itou M., Ono T., Noriki S. Provenance of intermediate waters in the western North Pacific deduced from thermodynamic imprint on δ13C of DIC// J. Geophys. Res. 2003. V. 108. P. 3347. https://doi.org/10.1029/2002JC001746
- Johnson G.C., Stabeno P.J. Deep Bering Sea circulation and variability, 2001–2016, from Argo data // J. Geophys. Res. Oceans. 2017. V. 122. P. 9765–9779. https://doi.org/10.1002/2017JC013425
- Kroopnick P.M. The distribution of13C of ΣCO2 in the world oceans // Deep-Sea Res. 1985. V. 32. P. 57–84.
- Lynch-Stieglitz J., Stocker T.F., Broecker W.S. et al. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling // Global Biogeochem. Cycles. 1995. V. 9. P. 653–665.
- Miura T., Suga T., Hanawa K. Winter mixed layer and formation of dichothermal water in the Bering Sea // J. Oceanogr. 2002. V. 58. P. 815–823.
- Miura T., Suga T., Hanawa K. Numerical study of formation of dichothermal water in the Bering Sea // J. Oceanogr. 2003. V. 59. P. 369–376.
- Mizuta G., Ohshima K.I., Fukamachi Y. et al. Winter mixed layer and its yearly variability under sea ice in the southwestern part of the Sea of Okhotsk // Cont. Shelf Res. 2004. V. 24. P. 643–657.
- Moreau S., Vancoppenolle M., Bopp L. et al. Assessment of the sea–ice carbon pump: Insights from a three-dimensional ocean–sea–ice biogeochemical model (NEMO–LIM–PISCES) // Elem. Sci. Anth. 2016. V. 4. https://doi.org/10.12952/journal.elementa.000122
- Naidu A., Cooper L., Finney B. et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments. // Int. J. Earth Sci. 2000. V. 89. P. 522–532. https://doi.org/10.1007/s005310000121.
- Nishioka J., Obata H., Hirawake T. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production // J. Oceanography. 2021. V. 77. P. 561–587. https://doi.org/10.1007/s10872-021-00606-5
- Nomura D., Kawaguchi Y., Webbet A.L. al. Meltwater layer dynamics in a central Arctic lead: Effects of lead width, re-freezing, and mixing during late summer // Elem. Sci. Anth. 2023. V. 11. Is. 1. https://doi.org/10.1525/elementa.2022.00102.
- Oppo D.W., Fairbanks R. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern ocean // Earth Planet. Sci. Lett. 1987. V. 86. № . 1. P. 1–15.
- Ortiz J.D., Mix A.C., Wheeler P.A. et al. Anthropogenic CO2 invasion into the northeast Pacific based on concurrent δ13CDIC and nutrient profiles from the California Current // Global Biogeochem. Cycles. 2000. V. 14. Is. 3. P. 917–929.
- Pickart R.S., Weingartner T.J., Pratt L.J. et al. Flow of winter-transformed Pacific water into the Western Arctic // Deep Sea Res. Part II. 2005. V.52. P. 3175–3198.
- Quay P., Sonnerup R., Stutsman J. et al. Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon // Global Biogeochem. Cycles. 2007. V. 21. P. GB1009. https://doi.org/10.1029/2006GB002761.
- Racapé V., Metzl N., Pierre C. et al. The seasonal cycle of δ3CDIC in the North Atlantic subpolar gyre // Biogeosciences. 2014. V. 11. P. 1683–1692.
- Rysgaard S., Glud R.N., Sejr M.K. et al. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas // J. Geophys. Res. 2007. V. 112. P. C03016. https://doi.org/10.1029/2006jc003572.
- Saltzman M.R., Thomas E. Carbon Isotope Stratigraphy // The Geologic Time Scale: Elsevier, 2012. P. 207–232.
- Schlitzer R. Ocean Data View. 2020. Available online at: http://odv.awi.de (accessed October 29, 2020).
- Schmittner A., Lund D.C. Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C) // Clim. Past. 2015. V. 11. Is. 2. P. 135–152.
- Steele M., Morison J., Ermold W. et al. Circulation of summer Pacific halocline water in the Arctic Ocean //J. Geophys. Res. 2004. V. 109. P. C02027. https://doi.org/10.1029/2003JC002009.
- Tagliabue A., Bopp L. Towards understanding global variability in ocean carbon-13 // Global Biogeochem. Cycles. 2008. V. 22. P. GB1025. https://doi.org/10.1029/2007GB003037.
- Takahashi Y., Matsumoto E., Watanabe Y.W. The distribution of δ13C in total dissolved inorganic carbon in the central North Pacific Ocean along 1750E and implications for anthropogenic CO2 penetration // Marine Chem. 2000. V. 69. P. 237–251.
- Talley L.D., Pickard G.L., Emery W.J. et al. Chapter 10 – Pacific Ocean// In: Talley L.D. et al. (Eds.). Descriptive Physical Oceanography (Sixth Edition). Boston: Academic Press, 2010. P. 303–362.
- Tanaka K., Takesue N., Nishioka J. et al. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer // Sci. Rep. 2016. V. 23. Is. 6. P. 34123. https://doi.org/10.1038/srep34123.
- Tazoe H., Obata H., Hara T. et al. Vertical Profiles of 226Ra and 228Ra Activity Concentrations in the Western Subarctic Gyre of the Pacific Ocean // Front. Mar. Sci. 2022. V. 9. P. 824862. https://doi.org/10.3389/fmars.2022.824862
- Tsunogai S., Ono T., Watanabe S. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon // J. Oceanogr. 1993. V. 49. P. 305–315.
- Verwega M.-T., Somes C.J., Schartau M. et al. Description of a global marine particulate organic carbon-13 isotope data set // Earth System Science Data. 2021. V. 13. № . 10. P. 4861–4880. https://doi.org/10.5194/essd-13-4861-2021.
- Wakita M., Watanabe S., Murata A. et al. Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean // Tellus. 2010. V. 62. Is. 5. P. 608–620.
- Watanabe Y.W., Chiba T., Tanaka T. Recent change in the oceanic uptake rate of anthropogenic carbon in the North Pacific subpolar region determined by using a carbon‐13 time series // J. Geophys. Res. 2011. V. 116. P. C02006. https://doi.org/10.1029/2010JC006199.
- Yamamoto M., Tanaka N., Tsunogai S. Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics // J. Geophys. Res. 2001. V. 106. P. 31075–31084.
- Yang J., Honjo S. Modeling the near-freezing dicothermal layer in the Sea of Okhotsk and its interannual variations // J. Geophys. Res. 1996. V. 101. P. 16421–16433. https://doi.org/10.1029/96JC01091.
- Yao Y., Li T., Zhu X. et al. Characteristics of water masses and bio-optical properties of the Bering Sea shelf during 2007–2009 // Acta Oceanologica Sinica. 2022. V. 41. Is. 10. P. 140–153. https://doi.org/10.1007/s13131-022-2019-z
- Zhang J., Quay P.D., Wilbur D.O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2 // Geochimic. Cosmochim. Acta. 1995. V. 59. No. 1. P. 107–114.
- Zhang Y., Yamamoto ‐ Kawai M., Williams W.J. Two decades of ocean acidification in the surface waters of the Beaufort Gyre, Arctic Ocean: Effects of sea ice melt and retreat from 1997–2016 // Geophys. Res. Lett. 2020. V. 47. P. e60119. 10.1029/2019GL086421
Дополнительные файлы
