Dissolved inorganic carbon (δ13С(DIC), [DIC]) in the waters of western part of Bering Sea

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, the isotopic composition and concentration of dissolved inorganic carbon in the waters of the western part of the Bering Sea (at the Koryak shelf and Chukotka continental slope, and Commander Islands, depth interval 10–4100 m) have been analyzed. [DIC] values vary from 1900 μmol/kg in the summer waters of the Koryak shelf to 2510 μmol/kg in the deep waters of the Commander Islands area. The value of δ13С(DIC) in productive summer waters exceeds +1‰, and reach +3.08‰ in the Koryak shelf surface waters. The depth of the carbon isotope minimum (–0.7‰) is ≈500 m. The model calculations were made taking into account physical processes (isotopic exchange with atmospheric CO2 and conservative mixing). The calculations show that in the main water column δ13С(DIC) and [DIC] values are controlled by the oxidation of organic substances. The predominance of primary production occurs only in the surface (<20 m) waters of the Bering Sea. Concentrations of DIC increase to depths of ≈1000 m and remain approximately constant (2430 ± 30 μmol/kg), exceeding [DIC] levels in deep Pacific waters. A “physical carbon pump” model in which the main role in the accumulation and redistribution of DIC within the water column is assigned to the winter waters of the Bering Sea is proposed.

全文:

受限制的访问

作者简介

Е. Dubinina

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS)

编辑信件的主要联系方式.
Email: elenadelta@gmail.com
俄罗斯联邦, Moscow

S. Kossova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS)

Email: elenadelta@gmail.com
俄罗斯联邦, Moscow

Yu. Chizhova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS)

Email: elenadelta@gmail.com
俄罗斯联邦, Moscow

A. Avdeenko

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS)

Email: elenadelta@gmail.com
俄罗斯联邦, Moscow

参考

  1. Дубинина Е.О., Коссова С.А., Мирошников А.Ю. и др. Растворенный неорганический углерод ([DIC], δ13С(DIC)) в водах восточной части Восточно-Сибирского моря // Геохимия. 2020. Т. 65. № 8 С. 731–751. https://doi.org/10.31857/S0016752520080051
  2. Дубинина Е.О., Коссова С.А., Осадчиев А.А. и др. Источники опреснения вод западной части Берингова моря по изотопным (δ18О, δD) данным // Океанология. 2024. В печати.
  3. Aagard K., Coachman L.K., Carmack E.C. On the halocline of the Arctic Ocean // Deep-Sea Research. 1981. V. 28. P. 529–545.
  4. Aksenov Y., Karcher M., Proshutinsky A. et al. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2016. V. 121. P. 27–59. https://doi.org/10.1002/2015JC011299.
  5. Alkire M.B., Morison J., Andersen R. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014 // J. Geophys. Res. Oceans. 2015. V. 120. P. 1573–1598. https://doi.org/10.1002/2014JC010023.
  6. Alling V., Porcelli D., Morth C.–M. et al. Degradation of terrestrial organic carbon, primary production and out–gassing of CO2 in the Laptev and East Siberian Seas as inferred from d13C values of DIC // Geochim. Cosmochim. Acta. 2012. V.95. P. 143–159.
  7. Anderson L.G., Olsson K., Chierici M. A carbon budget for the Arctic Ocean // Global Biogeochem. Cycles. 1998. V. 12. Is. 3. P. 455–465.
  8. Bauch D., Polyak L., Ortiz J.D. A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) in the Arctic Ocean // Arktos. 2015. V. 1. P. 15. https://doi.org/10.1007/s41063-015-0001-0
  9. Bacastow R., Keeling C.D., Lueker T.J. et al. The 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda // Global Biogeochem. Cycles. 1996. V. 10. P. 335–346.
  10. Bostock H.C., Opdyke B.N., Williams M.J.M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers // Deep Sea Res. Part I. 2010. V. 57. Is. 7. P. 847–859. https://doi.org/10.1016/j.dsr.2010.04.005
  11. Broecker W., Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the sea // Global Biogeochem. Cycles. 1992. V. 6. P. 315–320. https://doi.org/10.1029/92GB01672.
  12. Chu G., Luo X., Zheng Z. Causes of increased dissolved inorganic carbon in the subsurface layers in the western shelfbreak and high latitudes basin in the Arctic Pacific sector // Environ. Res. Lett. 2021. V. 16. P. 104008. https://doi.org/10.1088/1748–9326/ac2408
  13. Danielson S.L., Eisner L., Ladd C. et al. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas // Deep Sea Res. Part II. 2017. V. 135. P. 7–26.
  14. Danielson S.L., Weingartner T.J., Hedstrom K.S. et al. Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient // Progress in Oceanography. 2014. V. 125. P. 40–61. https://doi.org/10.1016/j.pocean.2014.04.006
  15. Dubinina E.O., Kossova S.A., Chizhova Yu.N. High-Precision Determination of Carbon Isotope Composition and Concentration of Dissolved Inorganic Carbon in Seawater. Geochemistry International. 2024. V. 62. N. 1. P. 45–54.
  16. Ekwurzel B., Schlosser P., Mortlock R.A. et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean // J. Geophys. Res. 2001. V. 106. P. 9075–9092.
  17. Feely R.A., Doney S.C., Cooley S.R. Ocean acidification: Present conditions and future changes in a high-CO2 world //Oceanography. 2009. V.22. P. 36–47. https://doi.org/10.5670/oceanog.2009.95
  18. Frey K.E., Kinney J.C., Stock L.V. et al. Observations of declining primary productivity in the western Bering strait // Oceanography. 2022. V.35. N.3–4. P. 140–143.
  19. Ge T., Luo C., Ren P. et al. Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics// Front. Mar. Sci. 2022. 9:998437. https://doi.org/10.3389/fmars.2022.998437
  20. Grebmeier J., Cooper L., Deniro M.J. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas // Limnol. Oceanogr. 1990. V. 35. P. 1182–1195.
  21. Gruber N., Keeling C.D., Bacastow R.B. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect // Global Biogeochem. Cycles. 1999. V. 13. P. 307–335.
  22. Hirawake T., Oida J., Yamashita Y. et al. Water mass distribution in the northern Bering and southern Chukchi seas using light absorption of chromophoric dissolved organic matter // Progress in Oceanography. 2021. V. 197. P. 102641. https://doi.org/10.1016/j.pocean.2021.102641
  23. Itou M., Ono T., Noriki S. Provenance of intermediate waters in the western North Pacific deduced from thermodynamic imprint on δ13C of DIC// J. Geophys. Res. 2003. V. 108. P. 3347. https://doi.org/10.1029/2002JC001746
  24. Johnson G.C., Stabeno P.J. Deep Bering Sea circulation and variability, 2001–2016, from Argo data // J. Geophys. Res. Oceans. 2017. V. 122. P. 9765–9779. https://doi.org/10.1002/2017JC013425
  25. Kroopnick P.M. The distribution of13C of ΣCO2 in the world oceans // Deep-Sea Res. 1985. V. 32. P. 57–84.
  26. Lynch-Stieglitz J., Stocker T.F., Broecker W.S. et al. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling // Global Biogeochem. Cycles. 1995. V. 9. P. 653–665.
  27. Miura T., Suga T., Hanawa K. Winter mixed layer and formation of dichothermal water in the Bering Sea // J. Oceanogr. 2002. V. 58. P. 815–823.
  28. Miura T., Suga T., Hanawa K. Numerical study of formation of dichothermal water in the Bering Sea // J. Oceanogr. 2003. V. 59. P. 369–376.
  29. Mizuta G., Ohshima K.I., Fukamachi Y. et al. Winter mixed layer and its yearly variability under sea ice in the southwestern part of the Sea of Okhotsk // Cont. Shelf Res. 2004. V. 24. P. 643–657.
  30. Moreau S., Vancoppenolle M., Bopp L. et al. Assessment of the sea–ice carbon pump: Insights from a three-dimensional ocean–sea–ice biogeochemical model (NEMO–LIM–PISCES) // Elem. Sci. Anth. 2016. V. 4. https://doi.org/10.12952/journal.elementa.000122
  31. Naidu A., Cooper L., Finney B. et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments. // Int. J. Earth Sci. 2000. V. 89. P. 522–532. https://doi.org/10.1007/s005310000121.
  32. Nishioka J., Obata H., Hirawake T. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production // J. Oceanography. 2021. V. 77. P. 561–587. https://doi.org/10.1007/s10872-021-00606-5
  33. Nomura D., Kawaguchi Y., Webbet A.L. al. Meltwater layer dynamics in a central Arctic lead: Effects of lead width, re-freezing, and mixing during late summer // Elem. Sci. Anth. 2023. V. 11. Is. 1. https://doi.org/10.1525/elementa.2022.00102.
  34. Oppo D.W., Fairbanks R. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern ocean // Earth Planet. Sci. Lett. 1987. V. 86. № . 1. P. 1–15.
  35. Ortiz J.D., Mix A.C., Wheeler P.A. et al. Anthropogenic CO2 invasion into the northeast Pacific based on concurrent δ13CDIC and nutrient profiles from the California Current // Global Biogeochem. Cycles. 2000. V. 14. Is. 3. P. 917–929.
  36. Pickart R.S., Weingartner T.J., Pratt L.J. et al. Flow of winter-transformed Pacific water into the Western Arctic // Deep Sea Res. Part II. 2005. V.52. P. 3175–3198.
  37. Quay P., Sonnerup R., Stutsman J. et al. Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon // Global Biogeochem. Cycles. 2007. V. 21. P. GB1009. https://doi.org/10.1029/2006GB002761.
  38. Racapé V., Metzl N., Pierre C. et al. The seasonal cycle of δ3CDIC in the North Atlantic subpolar gyre // Biogeosciences. 2014. V. 11. P. 1683–1692.
  39. Rysgaard S., Glud R.N., Sejr M.K. et al. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas // J. Geophys. Res. 2007. V. 112. P. C03016. https://doi.org/10.1029/2006jc003572.
  40. Saltzman M.R., Thomas E. Carbon Isotope Stratigraphy // The Geologic Time Scale: Elsevier, 2012. P. 207–232.
  41. Schlitzer R. Ocean Data View. 2020. Available online at: http://odv.awi.de (accessed October 29, 2020).
  42. Schmittner A., Lund D.C. Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C) // Clim. Past. 2015. V. 11. Is. 2. P. 135–152.
  43. Steele M., Morison J., Ermold W. et al. Circulation of summer Pacific halocline water in the Arctic Ocean //J. Geophys. Res. 2004. V. 109. P. C02027. https://doi.org/10.1029/2003JC002009.
  44. Tagliabue A., Bopp L. Towards understanding global variability in ocean carbon-13 // Global Biogeochem. Cycles. 2008. V. 22. P. GB1025. https://doi.org/10.1029/2007GB003037.
  45. Takahashi Y., Matsumoto E., Watanabe Y.W. The distribution of δ13C in total dissolved inorganic carbon in the central North Pacific Ocean along 1750E and implications for anthropogenic CO2 penetration // Marine Chem. 2000. V. 69. P. 237–251.
  46. Talley L.D., Pickard G.L., Emery W.J. et al. Chapter 10 – Pacific Ocean// In: Talley L.D. et al. (Eds.). Descriptive Physical Oceanography (Sixth Edition). Boston: Academic Press, 2010. P. 303–362.
  47. Tanaka K., Takesue N., Nishioka J. et al. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer // Sci. Rep. 2016. V. 23. Is. 6. P. 34123. https://doi.org/10.1038/srep34123.
  48. Tazoe H., Obata H., Hara T. et al. Vertical Profiles of 226Ra and 228Ra Activity Concentrations in the Western Subarctic Gyre of the Pacific Ocean // Front. Mar. Sci. 2022. V. 9. P. 824862. https://doi.org/10.3389/fmars.2022.824862
  49. Tsunogai S., Ono T., Watanabe S. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon // J. Oceanogr. 1993. V. 49. P. 305–315.
  50. Verwega M.-T., Somes C.J., Schartau M. et al. Description of a global marine particulate organic carbon-13 isotope data set // Earth System Science Data. 2021. V. 13. № . 10. P. 4861–4880. https://doi.org/10.5194/essd-13-4861-2021.
  51. Wakita M., Watanabe S., Murata A. et al. Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean // Tellus. 2010. V. 62. Is. 5. P. 608–620.
  52. Watanabe Y.W., Chiba T., Tanaka T. Recent change in the oceanic uptake rate of anthropogenic carbon in the North Pacific subpolar region determined by using a carbon‐13 time series // J. Geophys. Res. 2011. V. 116. P. C02006. https://doi.org/10.1029/2010JC006199.
  53. Yamamoto M., Tanaka N., Tsunogai S. Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics // J. Geophys. Res. 2001. V. 106. P. 31075–31084.
  54. Yang J., Honjo S. Modeling the near-freezing dicothermal layer in the Sea of Okhotsk and its interannual variations // J. Geophys. Res. 1996. V. 101. P. 16421–16433. https://doi.org/10.1029/96JC01091.
  55. Yao Y., Li T., Zhu X. et al. Characteristics of water masses and bio-optical properties of the Bering Sea shelf during 2007–2009 // Acta Oceanologica Sinica. 2022. V. 41. Is. 10. P. 140–153. https://doi.org/10.1007/s13131-022-2019-z
  56. Zhang J., Quay P.D., Wilbur D.O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2 // Geochimic. Cosmochim. Acta. 1995. V. 59. No. 1. P. 107–114.
  57. Zhang Y., Yamamoto ‐ Kawai M., Williams W.J. Two decades of ocean acidification in the surface waters of the Beaufort Gyre, Arctic Ocean: Effects of sea ice melt and retreat from 1997–2016 // Geophys. Res. Lett. 2020. V. 47. P. e60119. 10.1029/2019GL086421

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of stations where water samples were collected from the western Bering Sea during cruise 82 of the R/V Akademik Lavrentyev (June–July 2018). Areas: 1 – POL, 2 – KOM. Currents – according to [13, 20, 24, 32, 48].

下载 (574KB)
3. Fig. 2. TS diagrams in which the color scale corresponds to the values ​​of δ13С(DIC) (a) and [DIC] (b). Water designations: BsSW – subsurface; DtW – dichotermal; MtW – mesothermal; BSSWt, b – intermediate upper and lower, BSDW – deep waters of the Bering Sea [2].

下载 (352KB)
4. Fig. 3. Distribution of carbon isotope composition (a) and dissolved inorganic carbon (DIC) concentration (b) with depth in the waters of the western Bering Sea (summer surface waters are not shown). Dashed lines represent zero δ13С(DIC) value and average DIC concentration in ocean waters [7]. Filled fields represent the corresponding data for the Pacific Ocean transect along the 150° E meridian in the 13–40° N interval (2019 sampling [19]).

下载 (197KB)
5. Fig. 4. Position of the carbon isotope minimum in the area of ​​the Koryak shelf and the Chukchi slope (a) and in the area of ​​the Commander Islands (b).

下载 (175KB)
6. Fig. 5. Depth of the δ13С(DIC) minimum in the Commander Islands region depending on geographic latitude.

下载 (55KB)
7. Fig. 6. Distribution of concentration (a) and isotopic composition of carbon (b) DIC depending on salinity. Water designations – see text and Table 1.

下载 (211KB)
8. Fig. 7. Deviation of δ13C values ​​(a) and DIC concentration (b) from equilibrium with CO2 of the modern atmosphere in subsurface (1) and dichotermal (2) waters of the Bering Sea.

下载 (195KB)
9. Fig. 8. δ13С(DIC) and [DIC] values ​​in intermediate and deep waters of the Bering Sea: 1 – observed, 2 – calculated using the BSDW and DtW conservative mixing model (see text).

下载 (194KB)
10. Fig. 9. Calculated deviation from physical models for the entire depth range of the studied waters: 1 – deviation from compositions determined by equilibrium with CO2 of the modern atmosphere, 2 – deviation from the conservative mixing model. Water designations – see Table 1.

下载 (131KB)
11. Fig. 10. Deviation from physical models of carbon isotope composition and DIC concentration for waters of different types: I – subsurface waters (BsSW), II – deep waters BSDW, III, IV – intermediate and deep waters (MtW, BSSWt, BSSWb), V – dichotermal waters (DtW). Solid bold lines – calculation of OM oxidation trends with δ13C values ​​of organic matter of –20 and –24‰ (the extreme values ​​of the interval are taken according to [31, 40, 45, 50].

下载 (233KB)
12. Fig. 11. Schematic diagram of the vertical transport of dissolved inorganic carbon (“physical pump”) through the dichotermal water layer (DtW) and its subsequent distribution in the water column of the western Bering Sea in summer and winter.

下载 (469KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».