Quantum dynamics of intracavity third-subharmonic generation
- 作者: Gevorkyan S.T.1, Gevorkyan M.S.1
-
隶属关系:
- Institute for Physical Research
- 期: 卷 122, 编号 5 (2017)
- 页面: 784-790
- 栏目: Nonlinear and Quantum Optics
- URL: https://journal-vniispk.ru/0030-400X/article/view/165395
- DOI: https://doi.org/10.1134/S0030400X17050083
- ID: 165395
如何引用文章
详细
The quantum dynamics of the mean number of photons and quantum entropy of interacting modes, as well as the Wigner function of the stationary state of the fundamental mode and the third subharmonic mode has been investigated for the intracavity third-subharmonic generation. It is shown that the quantum dynamics of the system depends strongly on the nonlinear coupling coefficient between the modes. It is also demonstrated that, in the steady-state limit, depending on the intermodal coupling coefficient, the fundamental mode can be either in a pure coherent state, or in a squeezed state, or in a pure vacuum state. The third subharmonic mode in the subthreshold regime of generation of this mode is in the vacuum state. The Wigner function is squeezed over three sides of an equilateral triangle (squeezed vacuum). The quantum entropy of this state is nonzero. It is also shown that the third subharmonic mode, depending on the nonlinear coupling coefficient in the steady-state limit, can be localized in the three-component state with the same probability of detecting a field in each coherent component of the state and with the presence of quantummechanical interference between the state components. The mean number of photons in this state is smaller than unity. Depending on the nonlinear coupling coefficient, the third subharmonic mode can also be localized in the three-component state, which is a statistical mixture of three squeezed states.
作者简介
S. Gevorkyan
Institute for Physical Research
编辑信件的主要联系方式.
Email: saribek.gevorgyan@gmail.com
亚美尼亚, Ashtarak
M. Gevorkyan
Institute for Physical Research
Email: saribek.gevorgyan@gmail.com
亚美尼亚, Ashtarak
补充文件
