Analysis of the modified point-matching method in the electrostatic problem for axisymmetric particles


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

An integral modification of the generalized point-matching method (GPMMi) in the electrostatic problem for axisymmetric particles is developed. Scalar potentials that determine electric fields are represented as expansions in terms of eigenfunctions of the Laplace operator in the spherical coordinate system. Unknown expansion coefficients are determined from infinite systems of linear algebraic equations (ISLAEs), which are obtained from the requirement of a minimum of the integrated residual in the boundary conditions on the particle surface. Matrix elements of ISLAEs and expansion coefficients of the “scattered” field at large index values are analyzed analytically and numerically. It is shown analytically that the applicability condition of the GPMMi coincides with that for the extended boundary conditions method (ЕВСМ). As model particles, oblate pseudospheroids \(r\left( \theta \right) = a\sqrt {1 - {^2}{{\cos }^2}\theta } ,\;{^2} = 1 - {\raise0.7ex\hbox{${{b^2}}$} \!\mathord{\left/ {\vphantom {{{b^2}} {{a_2}}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${{a_2}}$}} \geqslant 0\) with semiaxes a = 1 and b ≤ 1 are considered, which are obtained as a result of the inversion of prolate spheroids with the same semiaxes with respect to the coordinate origin. For pseudospheroids, the range of applicability of the considered methods is determined by the condition \({\raise0.7ex\hbox{$a$} \!\mathord{\left/ {\vphantom {a b}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$b$}} < \sqrt 2 + 1\). Numerical calculations show that, as a rule, the ЕВСМ yields considerably more accurate results in this range, with the time consumption being substantially shorter. Beyond the ЕВСМ range of applicability, the GPMMi approach can yield reasonable results for the calculation of the polarizability, which should be considered as approximate and which should be verified with other approaches. For oblate nonconvex pseudospheroids (i.e., at \({\raise0.7ex\hbox{$a$} \!\mathord{\left/ {\vphantom {a b}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$b$}} \geqslant \sqrt 2 \)), it is shown that the spheroidal model works well if pseudospheroids are replaced with ordinary “effective” oblate spheroids. Semiaxes aef and bef of the effective spheroids are determined from the requirement of the particle volumes, as well as from the equality of the maximal longitudinal and transverse dimensions of particles or their lengths. As a result, the polarizability of pseudospheroids can be calculated by simple explicit formulas with an error of about 0.5–2%.

Об авторах

V. Farafonov

St. Petersburg State University of Aerospace Instrumentation

Автор, ответственный за переписку.
Email: far@aanet.ru
Россия, St. Petersburg, 190000

V. Ustimov

St. Petersburg State University of Aerospace Instrumentation

Email: far@aanet.ru
Россия, St. Petersburg, 190000

A. Tulegenov

St. Petersburg State University of Aerospace Instrumentation

Email: far@aanet.ru
Россия, St. Petersburg, 190000

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».