Estimation of soil organic carbon stocks of the territory of cities of the center of Rostov agglomeration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of the study and calculation of specific reserves of organic carbon in the residential, recreational and industrial zones of the cities of the Rostov agglomeration core. The results are based on the analysis of soil samples taken from more than one hundred soil pits and boreholes, as well as more than 500 samples from the surface ten-centimeter layer. The carbon content was determined by dry high-temperature catalytic combustion. The average content of organic carbon for the upper soil horizons was determined (3.89 ± 1.11%). Its change depending on belonging to a certain functional zone was recorded. The highest content was noted in the soils of the park and recreational zone (city parks, squares and forest parks) – 4.24 ± 0.85, the lowest in the residential zone and fallow areas of the agglomeration (2.35 ± 0.92 and 2.80 ± 0.64, respectively). The analysis of its specific reserves (per unit area) was carried out, the most and least provided with organic carbon soil combinations of various functional zones were identified. The park and recreational and industrial zones of the city have the largest specific reserves, and the residential zone has the smallest – residential. It was found in it when comparing soils of different types of land use. Comparison of carbon reserves in the meter-thick soil layer of the city with literary data on chernozems of the steppe zone show similar values. The results of the study in the future will allow us to assess the role of urban soils in the regional carbon balance and the need to take them into account when planning measures to reduce greenhouse gas emissions.

About the authors

P. N. Skripnikov

Southern Federal University

Email: 2s-t@mail.ru
ORCID iD: 0000-0002-7726-2178
Russian Federation, Rostov-on-Don, 344090

S. N. Gorbov

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

О. S. Bezuglova

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

А. А. Mezhenkov

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

S. S. Тagiverdiev

Southern Federal University

Author for correspondence.
Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

N. V. Salnik

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

М. О. Kravchenko

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

G. N. Nosov

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

I. V. Terekhov

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

А. Yu. Matetskaya

Southern Federal University

Email: 2s-t@mail.ru
Russian Federation, Rostov-on-Don, 344090

References

  1. Безуглова О.С., Тагивердиев С.С., Горбов С.Н. Физические характеристики городских почв Ростовской агломерации // Почвоведение. 2018. № 9. С. 1153–1159.
  2. Васенев В.И., Ананьева Н.Д., Макаров О.А. Особенности экологического функционирования конструктоземов на территории Москвы и Московской области // Почвоведение. 2012. № 2. С. 224–235.
  3. Васенев В.И., Прокофьева Т.В., Макаров О.А. Разработка подхода к оценке запасов почвенного органического углерода мегаполиса и малого населенного пункта // Почвоведение. 2013. № 6. С. 725–725.
  4. Вахненко Д.В. Антропогенная трансформация флоры Северо-Восточного Приазовья в пределах Ростовской городской агломерации. Дис. … канд. биол. наук. Ростов на Дону, 2000. 326 с.
  5. Горбов С.Н. Генезис, классификация и экологическая роль городских почв Европейской части Юга России (на примере Ростовской агломерации). Дис. … докт. биол. наук. М., 2018. 488 с.
  6. Горбов С.Н. Почвы урболандшафтов г. Ростов-на-Дону, их экологическое состояние и оценка загрязнения. Дис. … канд. биол. наук. Ростов-на-Дону, 2002. 217 с.
  7. Горбов С.Н., Безуглова О.С. Специфика органического вещества почв Ростова-на-Дону // Почвоведение. 2014. № 8. С. 953–953.
  8. Горбов С.Н., Безуглова О.С. Элементный состав гуминовых кислот почв урбанизированных территорий (на примере Ростова-на-Дону) // Почвоведение. 2013. № 11. С. 1316–1324. https://doi.org/10.7868/S0032180X13090025
  9. Неаман А., Яньез К. Дождевые черви как биоиндикаторы экологического состояния почв, загрязненных предприятиями меднодобывающей промышленности в Чили // Почвоведение. 2023. № 1. С. 81–88. https://doi.org/10.31857/S0032180X22600627
  10. Прокофьева Т.В., Розанова М.С., Попутников В.О. Некоторые особенности органического вещества почв на территориях парков и прилегающих жилых кварталов Москвы // Почвоведение. 2013. № 3. С. 302–314.
  11. Скрипников П.Н. Особенности накопления и профильного распределения углерода в почвах Ростовской агломерации. Дис. … канд. биол. наук. Ростов-на-Дону, 2023. 196 с.
  12. Скрипников П.Н., Горбов С.Н., Матецкая А.Ю., Тагивердиев С.С., Сальник Н.В. Особенности накопления и профильного распределения различных форм углерода в почвах парково-рекреационной зоны Ростовской агломерации // Наука Юга России. 2023. Т. 19. № 4. С. 52–66.
  13. Сычев В.Г., Налиухин А.Н., Шевцова Л.К., Рухович О.В. Беличенко М.В. Влияние систем удобрения на содержание почвенного органического углерода и урожайность сельскохозяйственных культур: результаты длительных полевых опытов Географической сети России // Почвоведение. 2020. № 12. С. 1521–1536.
  14. Тагивердиев С.С. Влияние урбопедогенеза на морфологические и физические свойства почв Ростовской агломерации. Дис. … канд. биол. наук. Ростов на Дону, 2020. 206 с.
  15. Тагивердиев С.С., Безуглова О.С., Горбов С.Н. Структурное состояние антропогенно-преобразованных почв разных зон землепользования Ростовской агломерации // Фундаментальные исследования. 2015. № 8-1. С. 47–53.
  16. Тагивердиев С.С., Скрипников П.Н., Безуглова О.С., Горбов С.Н., Козырев Д.А. Содержание и распределение органического и неорганического углерода в городских почвах Ростовской агломерации // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2020. № 4. С. 118–129.
  17. Тюрин И.В. Географические закономерности гумусообразования. М.: Изд-во АН СССР, 1949. С. 85–101.
  18. Холодов В А., Ярославцева Н.В., Яшин М.А., Фарходов Ю.Р., Ильин Б.С., Лазарев В.И. Содержание органического углерода и азота в размерных фракциях агрегатов типичных черноземов // Почвоведение. 2021. № 3. С. 320–326.
  19. Чендев, Ю.Г., Геннадиев, А.Н., Смирнова, М.А., Лебедева, М.П., Плотникова, О.О., Заздравных, Е.А., Шаповалов, А.С. Ранние стадии эволюции черноземов под лесной растительностью (Белгородская область) // Почвоведение. 2022. № 4. С. 387–404.
  20. Численность постоянного населения Российской Федерации по муниципальным образованиям на 1 января 2024 года. Федеральная служба государственной статистики (27 апреля 2024). https://rosstat.gov.ru/compendium/document/13282. Дата обращения 10.09.2024.
  21. Щепащенко Д.Г. Мухортова Л.В., Швиденко А.З., Ведрова, Э.Ф. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123–132.
  22. Экологический атлас Москвы. Рук. проекта Ильина И.Н. М.: АБФ/ABF, 2000. 96 с.
  23. Яцута К.З. Природа Ростовской области. Ростов-на-Дону: Ростовское областное книгоиздательство, 1940. 310 с.
  24. Arnfield A.J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island // Int. J. Climatol.: J. Royal Meteorolog. Soc. 2003. V. 23. № 1. P. 1–26. https://doi.org/10.1002/joc.859
  25. Beyer L., Kahle P., Kretschmer H., Wu Q. Soil organic matter composition of man‐impacted urban sites in North Germany // J. Plant Nutrition Soil Sci. 2001. V. 164. № 4. P. 359–364. https://doi.org/10.1002/1522-2624(200108)164:4<359::AID-JPLN359>3.0.CO;2-M
  26. Cambou A., Saby N.P., Hunault G., Nold F., Cannavo P., Schwartz C., Vidal-Beaudet L. Impact of city historical management on soil organic carbon stocks in Paris (France) // J. Soils Sediments. 2021. V. 21. P. 1038–1052. https://doi.org/10.1007/s11368-020-02869-9
  27. Canedoli C., Ferrè C., El Khair D.A., Padoa-Schioppa E., Comolli R. Soil organic carbon stock in different urban land uses: high stock evidence in urban parks // Urban Ecosystems. 2020. V. 23. P. 159–171. https://doi.org/10.1007/s11252-019-00901-6
  28. Chai L., Huang M., Fan H., Wang J., Jiang D., Zhang M., Huang Y. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC) // Chemosphere. 2019. V. 220. P. 249–258. https://doi.org/10.1016/j.chemosphere.2018.12.132
  29. Chien S. C., Krumins J. A. Natural versus urban global soil organic carbon stocks: A meta-analysis // Science of The Total Environment. 2022. V. 807. P. 150999. https://doi.org/10.1016/j.scitotenv.2021.150999
  30. Churkina G. The role of urbanization in the global carbon cycle // Frontiers in Ecology and Evolution. 2016. V. 3. P. 144. https://doi.org/10.3389/fevo.2015.00144
  31. Delgado-Baquerizo M. et al. Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide // Nature Climate Change. 2023. V. 13. P. 450–455. https://doi.org/10.1038/s41558-023-01646-z
  32. Dvornikov Y.A., Vasenev V.I., Romzaykina O.N., Grigorieva V.E., Litvinov Y.A., Gorbov S.N., Dolgikh A.V., Korneykova M.V., Gosse D.D. Projecting the urbanization effect on soil organic carbon stocks in polar and steppe areas of European Russia by remote sensing // Geoderma. 2021. V. 399. P. 115039. https://doi.org/10.1016/j.geoderma.2021.115039
  33. Feller C., Bernoux M. Historical advances in the study of global terrestrial soil organic carbon sequestration // Waste Management. 2008. V. 28. № 4. P. 734–740. https://doi.org/10.1016/j.wasman.2007.09.022
  34. Gorovtsov A., Minkina T.M., Morin T., Zamulina I.V., Mandzhieva S.S., Sushkova S.N., Rajput V. Ecological evaluation of polymetallic soil quality: the applicability of culture-dependent methods of bacterial communities studying // J. Soils and Sediments. 2019. V. 19. P. 3127–3138. https://doi.org/10.1007/s11368-018-2019-y
  35. Griggs D.J., Noguer M. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change // Weather. 2002. V. 57. № 8. P. 267–269.
  36. Grimm N.B., Faeth S.H., Golubiewski N.E., Redman C.L., Wu J., Bai X., Briggs J.M. Global change and the ecology of cities // Science. 2008. V. 319. № 5864. P. 756–760. https://doi.org/10.1126/science.1150195
  37. Guo H., Du E., Terrer C., Jackson R. B. Global distribution of surface soil organic carbon in urban greenspaces // Nature Communications. 2024 V. 15. № 1. 806. https://doi.org/10.1038/s41467-024-44887-y
  38. Hutchinson J.J., Campbell C.A., Desjardins R.L. (2007). Some perspectives on carbon sequestration in agriculture // Agricultural and Forest Meteorology. 2007. V. 142. № 2-4. P. 288–302. https://doi.org/10.1016/j.agrformet.2006.03.030
  39. Jackson R. B., Lajtha K., Crow S. E., Hugelius G., Kramer M. G., Piñeiro G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. // Annu. Rev. Ecol. Evol. Syst. 2017. V. 48. № 1. P. 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234
  40. Janzen H.H. Carbon cycling in earth systems—a soil science perspective // Agriculture, Ecosystems Environ. 2004. V. 104. № 3. P. 399–417. https://doi.org/10.1016/j.agee.2004.01.040
  41. Jobbágy E. G., Jackson R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation // Ecological applications. 2000. V. 10. № 2. P. 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  42. Lorenz K., Preston C.M., Kandeler E. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy // Geoderma. 2006. V. 130. № 3–4. P. 312–323. https://doi.org/10.1016/j.geoderma.2005.02.004
  43. Pulikova E., Ivanov F., Gorovtsov A., Dudnikova T., Zinchenko V., Minkina T., Mandzhieva S., Barahov A., Sherbakov A., Sushkova, S. Microbiological status of natural and anthropogenic soils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs // Environ. Geochem. Health. 2023. V. 45. № 12. P. 9373–9390. https://doi.org/10.1007/s10653-022-01405-7
  44. Qian Y.L., Follett R.F. Assessing soil carbon sequestration in turfgrass systems using longterm soil testing data // Agronomy J. 2002. V. 94. P. 930–935. https://doi.org/10.2134/agronj2002.9300
  45. Roper W.R. Robarge W.P., Osmond D.L., Heitman J.L. Comparing four methods of measuring soil organic matter in North Carolina soils // Soil Sci. Soc. Am. J. 2019. V. 83. № 2. P. 466-474. https://doi.org/10.2136/sssaj2018.03.0105
  46. Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution // Science. 2000. V. 287. № 5459. P. 1793–1796. https://doi.org/10.1126/science.287.5459.1793
  47. Schaldach R., Alcamo J. Simulating the effects of urbanization, afforestation and cropland abandonment on a regional carbon balance: a case study for Central Germany // Regional Environ. Change. 2007. V. 7. P. 131–148. https://doi.org/10.1007/s10113-007-0034-4
  48. Schneider A., Friedl M. A., Potere D. A new map of global urban extent from MODIS satellite data // Environ. Research Lett. 2009. V. 4. №. 4. P. https://iopscience.iop.org/article/10.1088/1748-9326/4/4/044003/meta
  49. Schulp C.J.E., Verburg P.H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region // Agriculture, Ecosystems and Environment. 2009. V. 133. P. 86–97. https://doi.org/10.1016/j.agee.2009.05.005
  50. Seto K.C., Fragkias M., Güneralp B., Reilly M.K. A meta-analysis of global urban land expansion // PloS One. 2011. V. 6. № 8. P. e23777. https://doi.org/10.1371/journal.pone.0023777
  51. Shepherd J.M., Pierce H., Negri A.J. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite // J. Appl. Meteorol. Climatology. 2002. V. 41. № 7. P. 689–701. https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
  52. Skripnikov P.N., Gorbov S.N., Tagiverdiev S.S., Salnik N.V., Kozyrev D.A., Terekhov I.V., Nosov G.N., Melnikova I.P. Carbon accumulation features in different functional zones of cities in the steppe zone // Environ. Monitoring Assessment. 2024. V. 196. № 7. P. 601. https://doi.org/10.1007/s10661-024-12773-1
  53. Sleutel S., De Neve S., Singier B., Hofman G. Quantification of organic carbon in soils: A comparison of methodologies and assessment of the carbon content of organic matter // Commun. Soil Sci. Plant Analysis. 2007. V. 38. № 19–20. P. 2647–2657. https://doi.org/10.1080/00103620701662877
  54. Vasenev V., Kuzyakov Y. Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors // Land Degradation Development. 2018. V. 29. № 6. P. 1607–1622. https://doi.org/10.1002/ldr.2944
  55. Vodyanitskii Y.N. Organic matter of urban soils: A review // Eurasian Soil Sci. 2015. V. 48. P. 802–811. https://doi.org/10.1134/S1064229315080116
  56. Weissert L.F., Salmond J.A., Schwendenmann L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types // Geoderma. 2016. V. 271. P. 80–90. https://doi.org/10.1016/j.geoderma.2016.02.014
  57. Wu Q., Blume H.P., Beyer L., Schleuß U. Method for characterization of inert organic carbon in Urbic Anthrosols // Commun. Soil Sci. Plant Analysis. 1999. V. 30. № 9-10. P. 1497–1506. https://doi.org/10.1080/00103629909370302
  58. Xu X., Sun Z., Hao Z., Bian Q., Wei K., Wan C. Effects of urban forest types and traits on soil organic carbon stock in Beijing // Forests. 2021. V. 12. № 4. P. 394. https://doi.org/10.3390/f12040394
  59. Zhang P., Wang Y., Sun H., Qi L., Liu H., Wang Z. Spatial variation and distribution of soil organic carbon in an urban ecosystem from high-density sampling. // Catena. 2021. V. 204, 105364. https://doi.org/10.1016/j.catena.2021.105364
  60. Zhang Z., Gao X., Zhang S., Gao H., Huang J., Sun S., Xia X. Urban development enhances soil organic carbon storage through increasing urban vegetation // Journal of Environmental Management. 2022. V. 312/ 114922. https://doi.org/10.1016/j.jenvman.2022.114922

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».