New approaches to assessing the transformation of soil microbial communities in the soil surface horizons of Rostov-on-Don
- Authors: Pulikova E.P.1, Ivanov F.D.1, Lacynnik E.S.1, Sedova V.V.1, Berezinskaya I.S.2, Dudnikova T.S.1, Gorovtsov A.V.1, Namsaraev Z.B.3, Minkina T.M.1
-
Affiliations:
- Southern Federal University
- Rostov Research Institute of Microbiology and Parasitology
- National Research Centre “Kurchatov Institute”
- Issue: No 5 (2025): SPECIAL ISSUE devoted to the study of the role of natural and anthropogenic transformed soils in urban ecosystems
- Pages: 651-662
- Section: БИОЛОГИЯ ПОЧВ
- URL: https://journal-vniispk.ru/0032-180X/article/view/295085
- DOI: https://doi.org/10.31857/S0032180X25050083
- EDN: https://elibrary.ru/BVYKWZ
- ID: 295085
Cite item
Abstract
The aim of this work was to study the activity and composition of soil microbial communities, their resistance to heavy metals and polycyclic aromatic hydrocarbons to develop approaches for assessing the transformation of microbial communities in Urbic Technosol. To determine the physicochemical properties and analyze microbiological indicators, soil sampling was carried out in the city of Rostov-on-Don – a large industrial city located in the steppe zone. Anthropogenically transformed soils and zonal soil – natural soils samples were collected. In anthropogenically transformed soils, a slight excess of the approximately permissible concentration of Zn (up to 244 mg/kg) and a significant excess of the maximum permissible concentration of benzo[a]pyrene (up to 400 ng/g) were found. The most sensitive indicators of urbanization were the number of streptomycetes and nitrification activity, which were 2–4 times lower in the urban soils. Despite the absence of changes in the number of other ecotrophic groups of microorganisms, such as copiotrophs, prototrophs, amylolytics, proteolytics, denitrifiers, a change in community composition was observed in anthropogenically transformed soils, with an increase in the proportion of pigmented microorganisms. Among them, actinobacteria capable of PAH degradation (Kocuria, Gordonia and Rhodococcus), as well as those tolerant to Cd, were identified. Thus, under the influence of urbanization, a restructuring of microbial communities occurs, which makes it possible to propose new bioindicators for the assessment of urban soils.
About the authors
E. P. Pulikova
Southern Federal University
Author for correspondence.
Email: epulikova@sfedu.ru
ORCID iD: 0009-0008-7716-9302
Russian Federation, Rostov-on-Don, 344090
F. D. Ivanov
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
E. S. Lacynnik
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
V. V. Sedova
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
I. S. Berezinskaya
Rostov Research Institute of Microbiology and Parasitology
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344000
T. S. Dudnikova
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
A. V. Gorovtsov
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
Z. B. Namsaraev
National Research Centre “Kurchatov Institute”
Email: epulikova@sfedu.ru
Russian Federation, Moscow, 123182
T. M. Minkina
Southern Federal University
Email: epulikova@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
References
- Воробьева Л.А. Теория и практика химического анализа почв. М.: ГЕОС, 2006. 400 с.
- Гранатская Т.А., Плацында В.А., Дворникова Т.П., Сирецану Л.Ф. Способ выявления микроорганизмов – деструкторов ксенобиотиков. Пат. РФ № RU2051961C1. 1996.
- Назаренко Н.Н., Свистова И.Д. Микробиологическая индикация почв урболандшафтов. Воронеж: Воронежский гос. аграрный ун-т им. Императора Петра I, 2013. 135 с.
- Приваленко В.В., Безуглова О.С. Экология города Ростова-на-Дону. Ростов-на-Дону: Северо-Кавказский научный центр высшей школы, 2003. 290 с.
- Alotaibi F., Hijri M., St-Arnaud M. Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils // Appl. Microbiol. 2021. V. 1. № 2. P. 329–351. https://doi.org/10.3390/applmicrobiol1020023
- Asker D., Awad T.S., Beppu T., Ueda K. Rapid and Selective Screening Method for Isolation and Identification of Carotenoid-Producing Bacteria // Microbial Carotenoids: Methods and Protocols. N.Y.: Springer, 2018. С. 143–170 https://doi.org/10.1007/978-1-4939-8742-9_9
- Atlas R.M. Handbook of Microbiological Media. Boca Raton: CRC Press, 2004. 2056 p. https://doi.org/10.1201/9781420039726
- Bååth E., Díaz-Raviña M., Bakken L.R. Microbial Biomass, Community Structure and Metal Tolerance of a Naturally Pb-Enriched Forest Soil // Microbiol. Ecol. 2005. V. 50. № 4. P. 496–505. https://doi.org/10.1007/s00248-005-0008-3
- Bao Z., Sato Y., Kubota M., Ohta H. Isolation and Characterization of Thallium-tolerant Bacteria from Heavy Metal-polluted River Sediment and Non-polluted Soils // Microbes Environ. 2006. V. 21. № 4. P. 251–260. https://doi.org/10.1264/jsme2.21.251
- Behera S., Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations // Microbiol. Res 2023. V. 273. P. 127399. https://doi.org/10.1016/j.micres.2023.127399
- Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches // Soil Biol. Biochem. 2013. V. 67. P. 192–211. https://doi.org/10.1016/j.soilbio.2013.08.024
- Cachada A., Ferreira da Silva E., Duarte A.C., Pereira R. Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons // Sci. Total Environ. 2016. V. 551–552. P. 271–284. https://doi.org/10.1016/j.scitotenv.2016.02.012.13
- Delden L., Larsen E., Rowlings D., Scheer C., Grace P. Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments // Urban Ecosyst. 2016. V. 19. № 2. P. 749–762. https://doi.org/10.1007/s11252-016-0529-1
- Dobrovol’skaya T.G., Zvyagintsev D.G., Chernov I.Yu., Golovchenko A.V., Zenova G.M., Lysak L.V., Manucharova N.A., Marfenina O.E., Polyanskaya L.M., Stepanov A.L., Umarov M.M. The role of microorganisms in the ecological functions of soils // Eurasian Soil Sc. 2015. V. 48. № 9. P. 959–967. https://doi.org/10.1134/S1064229315090033
- Elbanna K., El-Shahawy R.M., Atalla K. A new simple method for the enumeration of nitrifying bacteria in different environments // Plant Soil Environ. 2012. V. 58. № 1. P. 49–53. https://doi.org/10.17221/412/2011-PSE
- Ermakov V., Perelomov L., Khushvakhtova S., Tyutikov S., Danilova V., Safonov V. Biogeochemical assessment of the urban area in Moscow // Environ Monit Assess. 2017. V. 189. № 12. P. 641. https://doi.org/10.1007/s10661-017-6363-y
- Gertsen M., Arlyapov V., Perelomov L., Kharkova A., Golysheva A., Atroshchenko Y., Cardinale A., Reverberi A.P. Environmental Implications of Energy Sources: A Review on Technologies for Cleaning Oil-Contaminated Ecosystems // Energies. 2024. V. 17. P. 3561. https://doi.org/10.3390/en17143561
- Gorbov S.N., Bezuglova O.S., Abrosimov K.N., Skvortsova E.B., Tagiverdiev S.S., Morozov I.V. Physical properties of soils in Rostov agglomeration // Eurasian Soil Sc. 2016. V. 49. № 8. P. 898–907. https://doi.org/10.1134/S106422931606003X
- Gorbov S.N., Bezuglova O.S., Varduni T.V., Gorovtsov A.V., Tagiverdiev S.S., Hildebrant Yu.A. Genotoxicity and contamination of natural and anthropogenically transformed soils of the city of Rostov-on-Don with heavy metals // Eurasian Soil Sc. 2015. V. 48. № 12. P. 1383–1392. https://doi.org/10.1134/S106422931512008X
- Gorbov S.N., Gorovtsov A.V., Bezuglova O.S., Anisimova M.A., Skripnikov P.N., Tishchenko S.A., Marschner B. Enzyme activity of soils in urban landscapes of the lower Don area, Southern Russia // Land Degradation Development. 2021. V. 32. № 4. P. 1618–1631. https://doi.org/10.1002/ldr.3752
- Grishko V.N., Syshchikova O.V. Streptomyces communities in soils polluted with heavy metals // Eurasian Soil Sc. 2009. V. 42. № 2. P. 217–224. https://doi.org/10.1134/S1064229309020136
- Hagedorn C., Holt J.G. A nutritional and taxonomic survey of Arthrobacter soil isolates // Can. J. Microbiol. 1975. V. 21. № 3. P. 353–361. https://doi.org/10.1139/m75-050
- Howard J. Anthropogenic Soils in Urban Settings // Anthropogenic Soils Progress in Soil Science. Cham: Springer Int. Publ., 2017. С. 187–228. https://doi.org/10.1007/978-3-319-54331-4_10
- Ivshina I.B., Kostina L.V., Kamenskikh T.N., Zhuikova V.A., Zhuikova T.V., Bezel’ V.S. Soil microbiocenosis as an indicator of stability of meadow communities in the environment polluted with heavy metals // Russ. J. Ecol. 2014. V. 45. № 2. P. 83–89. https://doi.org/10.1134/S1067413614020039
- Korneykova M., Kozlova E., Ivashchenko K., Vasilieva M., Vasenev V. Urban soil microbiome: Activity, diversity and functioning // Encyclopedia Soils Environ. 2023. P. 480–493. https://doi.org/10.1016/B978-0-12-822974-3.00266-4
- Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications // Nat. Rev. Microbiol. 2013. V. 11. № 6. P. 371–384. https://doi.org/10.1038/nrmicro3028
- Lenart A., Wolny-Koładka K. The Effect of Heavy Metal Concentration and Soil pH on the Abundance of Selected Microbial Groups Within ArcelorMittal Poland Steelworks in Cracow // Bull. Environ. Contam. Toxicol. 2013. V. 90. № 1. P. 85–90. https://doi.org/10.1007/s00128-012-0869-3
- Liu J., Wu D., Zhu N., Wu Y., Li G. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials // Trends in Food Science & Technology. 2021. V. 109. P. 413–434. https://doi.org/10.1016/j.tifs.2021.01.012
- Liu Q., Liu Y., Zhang M. Mercury and Cadmium Contamination in Traffic Soil of Beijing, China // Bull. Environ. Contam. Toxicol. 2012. V. 88. № 2. P. 154–157. https://doi.org/10.1007/s00128-011-0441-6
- Liu X., Guo D., Ren C., Li R., Du J., Guan W., Li Y., Zhang Z. Performance of Streptomyces pactum–assisted phytoextraction of Cd and Pb: in view of soil properties, element bioavailability, and phytoextraction indices // Environ Sci Pollut Res. 2020. V. 27. № 35. P. 43514–43525. https://doi.org/10.1007/s11356-020-09842-6
- Lu L., Chen C., Ke T., Wang M., Sima M., Huang S. Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils // Sci. Total Environ. 2022. V. 830. P. 154732. https://doi.org/10.1016/j.scitotenv.2022.154732
- Lysak L.V., Lapygina E.V. The Diversity of Bacterial Communities in Urban Soils // Eurasian Soil Sc. 2018. V. 51. № 9. P. 1050–1056. https://doi.org/10.1134/S1064229318090077
- Mao Q., Huang G., Buyantuev A., Wu J., Luo S., Ma K. Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region, China // Ecol. Process. 2014. V. 3. № 1. P. 23. https://doi.org/10.1186/s13717-014-0023-8
- Martínez-Espinosa R.M., Cole J.A., Richardson D.J., Watmough N.J. Enzymology and ecology of the nitrogen cycle // Biochemical Society Transactions. 2011. V. 39. № 1. P. 175–178. https://doi.org/10.1042/BST0390175
- Massadeh A.M., Tahat M., Jaradat Q.M., Al-Momani I.F. Lead and cadmium contamination in roadside soils in Irbid City, Jordan: a case study // Soil and Sediment Contamination: Int. J. 2004. V. 13. № 4. P. 347–359. https://doi.org/10.1080/10588330490466030
- Miles L.S., Breitbart S.T., Wagner H.H., Johnson M.T.J. Urbanization Shapes the Ecology and Evolution of Plant-Arthropod Herbivore Interactions // Front. Ecol. Evol. 2019. V. 7. P. 310. https://doi.org/10.3389/fevo.2019.00310
- Naylo A., Almeida Pereira S.I., Benidire L., El Khalil H., Castro P.M.L., Ouvrard S., Schwartz C., Boularbah A. Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient // J. Soils Sediments. 2019. V. 19. № 5. P. 2153–2165. https://doi.org/10.1007/s11368-018-2221-y
- Niemeyer J.C., Lolata G.B., Carvalho G.M. de, Da Silva E.M., Sousa J.P., Nogueira M.A. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil // Applied Soil Ecology. 2012. V. 59. P. 96–105. https://doi.org/10.1016/j.apsoil.2012.03.019
- Nikitin D.A., Semenov M.V., Chernov T.I., Ksenofontova N.A., Zhelezova A.D., Ivanova E.A., Khitrov N.B., Stepanov A.L. Microbiological Indicators of Soil Ecological Functions: A Review // Eurasian Soil Sc. 2022. V. 55. № 2. P. 221–234. https://doi.org/10.1134/S1064229322020090
- Oliveira A., Pampulha M.E. Effects of long-term heavy metal contamination on soil microbial characteristics // Journal of Bioscience and Bioengineering. 2006. V. 102. № 3. P. 157–161. https://doi.org/10.1263/jbb.102.157
- O’Riordan R., Davies J., Stevens C., Quinton J.N., Boyko C. The ecosystem services of urban soils: A review // Geoderma. 2021. V. 395. P. 115076. https://doi.org/10.1016/j.geoderma.2021.115076
- Ozturkoglu-Budak S., Wiebenga A., Bron P.A., Vries R.P. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe’s milk cheese // International Journal of Food Microbiology. 2016. V. 237. P. 17–27. https://doi.org/10.1016/j.ijfoodmicro.2016.08.007
- Pašková V., Hilscherová K., Feldmannová M., Bláha L. Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N‐heterocyclic derivatives // Environ. Toxicol. Chem. 2006. V. 25. № 12. P. 3238–3245. https://doi.org/10.1897/06-162R.1
- Peng C., Ouyang Z., Wang M., Chen W., Li X., Crittenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Pollut. 2013. V. 178. P. 426–432. https://doi.org/10.1016/j.envpol.2013.03.058
- Placella S.A., Firestone M.K. Transcriptional Response of Nitrifying Communities to Wetting of Dry Soil // Appl. Environ. Microbiol. 2013. V. 79. № 10. P. 3294–3302. https://doi.org/10.1128/AEM.00404-13
- Pouyat R.V., Szlavecz K., Yesilonis I.D., Groffman P.M., Schwarz K. Chemical, Physical, and Biological Characteristics of Urban Soils // Urban Ecosystem Ecology Agronomy Monographs. N.Y.: Am. Soc. Agronomy, 2010. P. 119–152.
- Ramakrishnan B., Megharaj M., Venkateswarlu K., Sethunathan N., Naidu R. Mixtures of environmental pollutants: effects on microorganisms and their activities in soils // Rev. Environ. Contamin. Toxicol. N.Y.: Springer, 2011. P. 63–120. https://doi.org/10.1007/978-1-4419-8011-3_3
- Rasmussen L.D., Sørensen S.J. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil // FEMS Microbiol. Ecol. 2001. V. 36. № 1. P. 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00820.x
- Rathsack K., Böllmann J., Martienssen M. Comparative Study of Different Methods for Analyzing Denitrifying Bacteria in Fresh Water Ecosystems // J. Water Resource Protection. 2014. V. 6. № 6. P. 609–617. https://doi.org/10.4236/jwarp.2014.66059
- Sazonova O.I., Gavrichkova O., Ivanova A.A., Petrikov K.V., Streletskii R.A., Sarzhanov D.A., Korneykova M.V., Novikov A.I., Vasenev V.I., Ivashchenko K.V., Slukovskaya M.V., Vetrova A.A. Polycyclic aromatic hydrocarbon-degrading bacteria in three different functional zones of the cities of Moscow and Murmansk // Microorganisms. 2022. V. 10. № 10. P. 1979. https://doi.org/10.3390/microorganisms10101979
- Serrano L.Z., Lara N.O., Vera R.R., Cholico-González D. Removal of Fe(III), Cd(II), and Zn(II) as Hydroxides by Precipitation–Flotation System // Sustainability. 2021. V. 13. № 21. P. 11913. https://doi.org/10.3390/su132111913
- Smagin A.V., Azovtseva N.A., Smagina M.V., Stepanov A.L., Myagkova A.D., Kurbatova A.S. Criteria and methods to assess the ecological status of soils in relation to the landscaping of urban territories // Eurasian Soil Sc. 2006. V. 39. № 5. P. 539–551. https://doi.org/10.1134/S1064229306050115
- Stoma G.V., Manucharova N.A., Belokopytova N.A. Biological Activity of Microbial Communities in Soils of Some Russian Cities // Eurasian Soil Sc. 2020. V. 53. № 6. P. 760–771. https://doi.org/10.1134/S1064229320060125
- Tang J., Zhang J., Ren L., Zhou Y., Gao J., Luo L., Yang Y., Peng Q., Huang H., Chen A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution // J. Environ. Managem. 2019. V. 242. P. 121–130. https://doi.org/10.1016/j.jenvman.2019.04.061
- Throbäck I.N. Exploring denitrifying communities in the environment. Uppsala: Swedish University of Agricultural Sciences, 2006. 39 с.
- Wakisaka Y., Koizumi K., Nishimoto Y. A preferential isolation procedure for asporogenous gram-positive bacteria // J. Antibiot. 1982. V. 35. № 4. P. 441–449. https://doi.org/10.7164/antibiotics.35.441
- Wang X., Gao Q., Wang W., Yan J., Liu Y., Kuang S., Lu J. Determining priority control factors for heavy metal management in urban road dust based on source-oriented probabilistic ecological-health risk assessment: A study in Xi’an during peak pollution season // J. Environ. Management. 2024. V. 369. P. 122105. https://doi.org/10.1016/j.scitotenv.2015.08.085
- Wang G., Wang L., Ma F., You Y., Wang Y., Yang D. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L // J. Hazardous Mater. 2020. V. 389. P. 121873. https://doi.org/10.1016/j.jhazmat.2019.121873
- Wu S., Peng S., Zhang X., Wu D., Luo W., Zhang T. et al. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China // J. Geochem. Exploration. 2015. V. 148. P. 71–78. https://doi.org/10.1016/j.gexplo.2014.08.009
- Yan J., Quan G., Ding C. Effects of the Combined Pollution of Lead and Cadmium on Soil Urease Activity and Nitrification // Procedia Environ. Sci. 2013. V. 18. P. 78–83. https://doi.org/10.1016/j.proenv.2013.04.011
- Zhao H., Yu L., Yu M., Afzal M., Dai Z., Brookes P., Xu J. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil // J. Hazardous Mater. 2020. V. 390. P. 121631. https://doi.org/10.1016/j.jhazmat.2019.121631
Supplementary files
