Enzyme activity in urban soil structures in the steppe zone
- Authors: Dadenko E.V.1,2, Gorbov S.N.1,2, Tagiverdiev S.S.1,2, Skripnikov P.N.1,2
-
Affiliations:
- Sirius University of Science and Technology
- Southern Federal University
- Issue: No 5 (2025): SPECIAL ISSUE devoted to the study of the role of natural and anthropogenic transformed soils in urban ecosystems
- Pages: 663-673
- Section: БИОЛОГИЯ ПОЧВ
- URL: https://journal-vniispk.ru/0032-180X/article/view/295086
- DOI: https://doi.org/10.31857/S0032180X25050093
- EDN: https://elibrary.ru/BVTUVI
- ID: 295086
Cite item
Abstract
Assessment of the enzymatic activity of constructed soils (constructozems) was performed during the second year of their functioning at the “Experimental Station for Study of Soil Constructs” in the Botanical Garden of the Southern Federal University (Rostov-on-Don, Russia). The station consists of 15 autonomous plots representing five different variants of soil constructions created using sand, humus-accumulative horizons of chernozem, loess-like loam, and high-moor peat. These substrates are traditionally used for landscaping and urban greening purposes in steppe zones. The Haplic Chernozem, located on a watershed plot in the vicinity of the Experimental Station, was studied as a background area. The activities of dehydrogenase, phosphatase, catalase, β-glucosidase, and the intensity of fluorescein diacetate (FDA) hydrolysis were analyzed for the soil constructions and the reference soil. The most informative characteristics of the constructozems were activity of β-glucosidase, catalase, phosphatase, and FDA hydrolysis intensity. Enzymatic activity allows an assessment of the stability of the constructed soils, as well as intensity and direction of biochemical processes occurring in the constructozems. Enzyme activity depends on the substrates used during construction, their combinations, thickness, and the horizon sequence. Some variants of constructozems demonstrate levels of enzymatic activity close to the natural zonal soil (background), indicating functional stability and their ability to perform ecological functions under the climatic conditions of the Rostov Region.
Keywords
About the authors
E. V. Dadenko
Sirius University of Science and Technology; Southern Federal University
Email: 2s-t@mail.ru
Ivanovsky Academy of Biology and Biotechnology
Russian Federation, Federal Territory “Sirius”, 354340; Rostov-on-Don, 344006S. N. Gorbov
Sirius University of Science and Technology; Southern Federal University
Email: 2s-t@mail.ru
Ivanovsky Academy of Biology and Biotechnology
Russian Federation, Federal Territory “Sirius”, 354340; Rostov-on-Don, 344006S. S. Tagiverdiev
Sirius University of Science and Technology; Southern Federal University
Author for correspondence.
Email: 2s-t@mail.ru
Ivanovsky Academy of Biology and Biotechnology
Russian Federation, Federal Territory “Sirius”, 354340; Rostov-on-Don, 344006P. N. Skripnikov
Sirius University of Science and Technology; Southern Federal University
Email: 2s-t@mail.ru
Ivanovsky Academy of Biology and Biotechnology
Russian Federation, Federal Territory “Sirius”, 354340; Rostov-on-Don, 344006References
- Ананьева Н.Д., Иващенко К.В., Сушко С.В. Микробные показатели городских почв и их роль в оценке экосистемных сервисов // Почвоведение. 2021. № 10. С. 1231–1246. https://doi.org/10.31857/S0032180X21100038
- Горбов С.Н. Генезис, классификация и экологическая роль городских почв Европейской части Юга России (на примере Ростовской агломерации). Дис. … докт. биол. наук. М., 2018. 488 с.
- Горбов С.Н., Васенев В.И., Минаева Е.Н., Тагивердиев С.С., Скрипников П.Н., Безуглова О.С. Краткосрочная динамика эмиссии СО2 и содержания углерода в городских почвенных конструкциях степной зоны // Почвоведение. 2023. № 9. С. 1103–1115. https://doi.org/10.31857/S0032180X23600282
- Даденко Е.В., Денисова Т.В., Казеев К.Ш., Колесников С.И. Оценка применимости показателей ферментативной активности в биодиагностике и мониторинге почв // Поволжский экологический журнал. 2013. № 4. С. 385–393.
- Даденко Е.В., Казеев К.Ш., Колесников С.И. Методы определения ферментативной активности почв. Ростов-на-Дону: Изд-во ЮФУ, 2021. 176 с.
- Даденко Е.В., Мясникова М.А., Казеев К.Ш., Колесников С.И., Вальков В.Ф. Биологическая активность чернозема обыкновенного при длительном использовании под пашню // Почвоведение. 2014. № 6. С. 724–733. https://doi.org/10.7868/S0032180X14060021
- Денисова Т.В., Казеев К.Ш., Колесников С.И., Вальков В.Ф. Влияние гамма-излучения на биологические свойства почвы (на примере чернозема обыкновенного) // Почвоведение. 2005. № 7. С. 877–881.
- Инишева Л.И., Ивлева С.Н., Щербакова Т.А. Руководство по определению ферментативной активности торфяных почв и торфов. Томск: Изд-во том. ун-та, 2002. 119 с.
- Инишева Л.И., Порохина Е.В., Головченко А.В. Биохимическая активность торфов различного генезиса // Сибирский вестник сельскохозяйственной науки. 2024. № 54. С. 5–16. https://doi.org/10.26898/0370-8799-2024-5-1
- Казеев К.Ш., Колесников С.И., Акименко Ю.В., Даденко Е.В. Методы диагностики наземных экосистем. Ростов-на-Дону: Изд-во ЮФУ, 2016. 356 с.
- Казеев К.Ш., Лосева Е.С., Боровикова Л.Г., Колесников С.И. Влияние загрязнения современными пестицидами на биологическую активность чернозема обыкновенного // Агрохимия. 2010. № 11. С. 39–44.
- Казеев К.Ш., Трушков А.В., Одабашян М.Ю., Колесников С.И. Постагрогенное изменение ферментативной активности и содержания органического углерода чернозема в первые 3 года залежного режима // Почвоведение. 2020. № 7. С. 901–910. https://doi.org/10.31857/S0032180X20070059
- Каширская Н.Н., Плеханова Л.Н., Чернышева Е.В., Ельцов М.В., Удальцов С.Н., Борисов А.В. Пространственно-временные особенности фосфатазной активности естественных и антропогенно-преобразованных почв // Почвоведение. 2020. № 1. С. 89–101. https://doi.org/10.31857/S0032180X20010098
- Приходько В.Д., Казеев К.Ш., Вилкова В.В., Нижельский М.С., Колесников С.И. Изменение активности ферментов в постпирогенных почвах // Почвоведение. 2023. № 1. С. 118–128. https://doi.org/10.31857/S0032180X22600743
- Пуртова Л.Н, Тимофеева Я.О. Изучение некоторых свойств и активности каталазы агротемногумусовых подбелов при различных видах агротехнического воздействия // Почвоведение. 2022. № 10. С. 1277–1289. https://doi.org/10.31857/S0032180X22100136
- Тимошенко А.Н., Колесников С.И., Кабакова В.С., Евстегнеева Н.А., Минникова Т.В., Казеев К.Ш., Минкина Т.М. Оценка устойчивости почв к загрязнению наночастицами платины методами биодиагностики // Почвоведение. 2023. № 8. С. 997–1006. https://doi.org/10.31857/S0032180X23600221
- Якушев А.В., Матышак Г.В., Тархов М.О., Качалкин А.В., Сефилян А.Р., Петров Д.Г. Микробиологические особенности почв торфяных пятен бугристых торфяников севера Западной Сибири // Почвоведение. 2019. № 9. С. 1070–1080. https://doi.org/10.1134/S0032180X19090119
- Alef K., Nannipieri P. Methods in applied soil microbiology and biochemistry, London: Academic Press. 1995. 576 p.
- Daunoras J., Kačergius A., Gudiukaitė R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem // Biology. 2024. V. 13. P. 85. https://doi.org/10.3390/biology13020085
- De Almeida R.F., Naves E.R., da Mota R.P. Soil quality: Enzymatic activity of soil β-glucosidase // Glob. J. Agric. Res. Rev. 2015. V. 3. P. 146–450.
- Deeb M., Groffman P.M., Blouin M., Egendorf S.P., Vergnes A., Vasenev V., Cao D.L., Walsh5 D., Morin T., Séré G. Using constructed soils for green infrastructure –challenges and limitations // Soil. 2020. V. 6. P. 413–434. https://doi.org/10.5194/soil-6-413-2020
- Dick R.P. Soil enzyme activities as indicators of soil quality // Soil Sci. Soc. Am. J. 1997. V. 58. P. 107–124.
- Dvornikov Y.A., Vasenev V.I., Romzaykina O.N., Grigorieva V.E., Litvinov Y.A., Gorbov S.N., Dolgikh A.V., Korneykova M.V., Gosse D.D. Projecting the urbanization effect on soil organic carbon stocks in polar and steppe areas of European Russia by remote sensing // Geoderma. 2021. V. 399. P. 115039. https://doi.org/10.1016/j.geoderma
- García-Gil J.C., Plaza C., Soler-Rovira P., Polo A. Long-Term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass // Soil Biol. Biochem. 2000. V. 32. P. 1907–1913. https://doi.org/10.1016/S0038-0717(00)00165-6
- Gianfreda L., Ruggiero P. Enzyme activities in soil // In Nucleic Acids and Proteins in Soil. Berlin: Springer, 2006. P. 20–25.
- Gómez-Brandón M., Herbón C., Probst M., Fornasier F., Barral M.T., Paradelo R. Influence of land use on the microbiological properties of urban soils // Appl. Soil Ecol. 2022. V. 175. P. 104452. https://doi.org/10.1016/j.apsoil.2022.104452
- Ivashchenko K., Lepore E., Vasenev V., Ananyeva N., Demina S., Khabibullina F., Vaseneva I., Selezneva A., Dolgikh A., Sushko S. et al. Assessing soil-like materials for ecosystem services provided by constructed Technosols // Land. 2021. V. 10. P. 1185. https://doi.org/10.3390/land10111185
- Karaca A., Cema C.C., Turgay O.C., Kizilkaya R. Soil enzymes as indicator of soil quality // Soil Enzymology, Soil Biology. Berlin: Springer, 2011. P. 119–148.
- Kramer S., Marhan S., Haslwimmer H., Ruess L., Kandeler E. Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil // Soil Biol. Biochem. 2013. V. 61. P. 76–85. https://doi.org/10.1016/j.soilbio.2013.02.006
- Kuzyakov Y., Razavi B.S. Photosynthesis controls of rhizosphere respiration and organic matter decomposition // Soil Biol. Biochem. 2021. V. 135. P. 343–360. https://doi.org/10.1016/j.soilbio.2019.05.011
- Ma X., Mason-Jones K., Liu Y., Blagodatskaya E., Kuzyakov Y., Guber A., Dippold M. A. et al. Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots // Soil Biol. Biochem. 2019. V. 135. P. 420–428. https://doi.org/10.1016/j.soilbio.2019.06.001
- Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., Peñuelas J. Global patterns of phosphatase activity in natural soils // Scientific Reports. 2017. V. 7. P. 1337. https://doi.org/10.1038/s41598-017-01418-8
- Nakayama M., Tateno R. Rhizosphere effects on soil extracellular enzymatic activity and microbial abundance during the low-temperature dormant season in a northern hardwood forest // Rhizosphere. 2022. V. 21. P. 100465. https://doi.org/10.1016/j.rhisph.2021.100465
- Nannipieri P., Giagnoni L., Landi L., Renella G. Role of Phosphatase Enzymes in Soil // Phosphorus in Action. Soil Biology. Berlin: Springer Press, 2011. V. 26. P. 215–243. https://doi.org/10.1007/978-3-642-15271-9_9
- Schinner F., Ohlinger R., Margesin R. Methods in Soil Biology. Berlin: Springer Press, 1996. 426 p.
- Schnurer J., Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter // Appl. Environ. Microbiol. 1982. V. 43. P. 1256–1261. https://doi.org/ 10.1128/aem.43.6.1256-1261.1982
- Singh B.K., Munro S., Potts J.M., Millard P. // Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl. Soil Ecology. 2007. V. 36. P. 147–155. https://doi.org/10.1016/j.apsoil.2007.01.004
- Stone M.M., Plante A.F. Changes in phosphatase kinetics with soil depth across a variable tropical landscape // Soil Biol. Biochem. 2014. V. 71. P. 61–67. https://doi.org/10.1016/j.soilbio.2014.01.006
- Tabatabai M.A. Soil enzymes // Methods of soil analysis. Part 2. Microbiological and biochemical properties. SSSA Book Series No. 5. Soil Science Society of America. Madison, 1994. P. 775–833.
- Utobo E.B., Tewari L. Soil enzymes as bioindicators of soil ecosystem status // Appl. Ecol. Environ. Res. 2015. V. 13. P. 147–169. https://doi.org/10.15666/aeer/1301_147169
Supplementary files
