Levels, sources and hazard of accumulation of polycyclic aromatic hydrocarbons in the soil cover of Ulan-Ude

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, the contamination of the soil cover of Ulan-Ude, the capital of the Republic of Buryatia, with polycyclic aromatic hydrocarbons (PAHs) was studied. The work is based on the materials of the soil-geochemical survey of Ulan-Ude in the summer of 2022. Analysis of the content of 17 individual PAHs in 220 samples showed the levels of their accumulation in the upper (0–10 cm) soil horizons of different land use zones of the city. The average amount of PAHs in the soil cover of Ulan-Ude was 801 ng/g, exceeding the background concentration by more than 8.5 times. In terms of total PAH content, the land use zones form a series: transport railway (2250 ng/g) > industrial, motor transport (873) > residential single-story (860) > residential multi-story (530) > recreational (444). The composition of polyarenes is dominated by medium- (43%) and high-molecular (46%) compounds. Among polyarenes, medium- (43%) and high-molecular (46%) compounds dominate. Using the PCA/ APCS-MLR model, three components were identified that control the accumulation of PAHs in the city soils. The first explains 76.8% of the total variance and includes all high-molecular PAHs, as well as 4-nuclear benz(a)anthracene and chrysene, formed during the combustion of wood and coal in private buildings, coal at thermal power plants, industrial combustion of oil and contained in emissions from motor and rail transport. The contribution of the second component is 13.7%, it is due to low-molecular PAHs and reflects the contribution of forest fires and petrogenic sources, including coal dust. The third component is associated with the accumulation of phenanthrene, fluoranthene, pyrene and chrysene, resulting from the combustion of wood, coal and diesel fuel. An assessment of the environmental hazard of the studied PAHs, expressed in terms of benz(a)pyrene equivalents, showed that the MPC for benz(a)pyrene was exceeded in their sum on 63% of the city’s territory; the excess factor in soils varied from 1.1 to 63.9 with an average value of 5.7.

About the authors

N. B. Zhaxylykov

Lomonosov Moscow State University

Email: natalk@mail.ru
ORCID iD: 0009-0008-4486-9812
Russian Federation, Moscow, 119991

N. E. Kosheleva

Lomonosov Moscow State University

Author for correspondence.
Email: natalk@mail.ru
Russian Federation, Moscow, 119991

References

  1. Битюкова В.Р., Дехнич В.С., Кравчик А.И., Касимов Н.С. Оценка влияния автономных систем отопления жилых строений на загрязнение воздуха в муниципальных образованиях (на примере Байкальского региона) // Вестник Моск. ун-та. Сер. 5, география. 2024. Т. 79. № 1. С. 22–36. https://doi.org/10.55959/MSU0579-9414.5.79.1.2
  2. Валова Е.Э. Эколого-геохимические особенности городских ландшафтов степной и лесостепной зон межгорной котловины (на примере г. Улан-Удэ). Дис. … канд. геогр.х наук. Улан-Удэ, 2003. 158 с.
  3. Василевич М.И., Габов Д.Н., Безносиков В.А., Кондратенок Б.М. Органическое вещество снежного покрова: диагностика степени згрязнения в зоне влияния выбросов целлюлозно-бумажного предприятия // Вестник Ин-та биологии Коми НЦ Уральского отделения РАН, 200. № 11. С. 19–25.
  4. География Сибири в начале XXI века: В 6 т. / Под ред. Плюснина В.М. Новосибирск: Гео, 2016. Т. 6. Восточная Сибирь. 396 с.
  5. Геохимия полициклических ароматических углеводородов в горных породах и почвах / Под ред. Геннадиева А.Н., Пиковского Ю.И. М.: Изд-во Моск. ун-та, 1996. 192 с.
  6. Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. Смоленск: Ойкумена, 2003. 268 с.
  7. Григорьева Л.О. Анализ транспортной системы г. Улан-Удэ // Землеустройство, кадастр недвижимости и мониторинг земельных ресурсов. 2021. С. 131–135.
  8. Дамбиев Ц.Ц., Тыскинеева И.Е., Мадеева Е.В. Анализ загрязнения атмосферного воздуха г. Улан-Удэ объектами теплоэнергетики // Энергетик. 2016. № 3. С. 36–38.
  9. Журавлева Е.В., Михайлова Е.С., Журавлева Н.В., Исмагилов З.Р. Полициклические ароматические углеводороды из углей в объектах окружающей среды // Химия в интересах устойчивого развития. 2020. Т. 28. № 3. С. 328–337. https://doi.org/10.15372/KhUR2020237
  10. Завгородняя Ю.А., Поповичева О.Б., Кобелев В.О., Стародымова Д.П., Шевченко В.П., Касимов Н.С. Полициклические ароматические углеводороды в снежном покрове Ямало-Ненецкого автономного округа как индикаторы влияния источников техногенных эмиссий // Проблемы Арктики и Антарктики. 2021. Т. 67. № 3. С. 261–279. https://doi.org/10.30758/0555-2648-2021-67-3-261-279
  11. Корляков И.Д., Касимов Н.С., Кошелева Н.Е. Тяжелые металлы и металлоиды в почвенном покрове г. Улан-Удэ // Вестник Пермского национального исследовательского политех. ун-та. Прикладная экология. Урбанистика. 2019. № 3. С. 120–137.
  12. Корунов А.О., Халиков И.С., Сурнин В.А. Сезонное изменение и территориальное распределение содержания бенз(a)пирена в атмосферном воздухе Российской Федерации // Экологическая химия. 2020. № 29. С. 270–282.
  13. Кошелева Н.Е., Никифорова Е.М., Тимофеев И.В., Завгородняя Ю.А. Полициклические ароматические углеводороды в почвах Северобайкальска // География и природные ресурсы. 2023. № 4. С. 77–89. https://doi.org/10.15372/GIPR20230408
  14. Кузьмин В.А. Почвенное районирование // Атлас Байкала. М.: Омская картографическая фабрика, 1993. 130 с.
  15. Майстренко В.Н., Клюев Н.А. Эколого-аналитический мониторинг стойких органических загрязнителей. М.: БИНОМ. Лаб. знаний, 2004. 337 c.
  16. Общегородской сводный том “Охрана атмосферы и предельно допустимые выбросы (ПДВ) г. Улан-Удэ”. СПб.: Ин-т прикл. экологии и гигиены, 2013. 473 с.
  17. Осорова Т.Д., Спиридонова А.В., Чудинова О.Н. Изучение транспортной сети г. Улан-Удэ для оценки шумового загрязнения от автотранспорта. Социальные и гуманитарные науки. Юриспруденция: Матер. национальной науч.-пр. конф. ВСГУТУ “Образование и наука”. Улан-Удэ: Изд-во ВСГУТУ, 2023. С. 70-74.
  18. Ровинский Ф.Я. Теплицкая Т.А., Алексеева Т.А. Фоновый мониторинг полициклических ароматических углеводородов. Л.: Гидрометеоиздат, 1988. 224 с.
  19. Убугунов В.Л., Кашин В.К. Тяжелые металлы в садово-огородных почвах и растениях Улан-Удэ. Улан-Удэ: Изд-во БНЦ СО РАН, 2004. 128 с.
  20. Убугунов Л.Л. Почвенные ресурсы Республики Бурятия, их агроэкологическое состояние и рациональное использование // Вестник БГСХА им. В.Р. Филиппова. 2020. № 2. С. 35–46. https://doi.org/10.34655/bgsha.2020.59.2.005
  21. Убугунов Л.Л., Убугунова В.И., Бадмаев Н.Б., Гынинова А.Б., Убугунов В.Л., Балсанова Л.Д. Почвы Бурятии: разнообразие, систематика и классификация // Вестник Бурятской гос. с./х. академии им. В.Р. Филиппова. 2012. № 2. С. 45–52.
  22. Халиков И.С. Оценка возможности диагностики источников загрязнения атмосферного воздуха полициклическими ароматическими углеводородами по их компонентному составу. Тамбов: Юконф, 2024. 80 с.
  23. Цибарт А.С., Геннадиев А.Н. Ассоциации полициклических ароматических углеводородов в пройденных пожарами почвах // Вестн. Моск. ун-та. Сер. 5, география. 2011. № 3. С. 13–19.
  24. Экологический атлас бассейна озера Байкал. Иркутск: Изд-во Ин-та географии им. В.Б. Сочавы СО РАН, 2015. 145 с.
  25. Яковлева Е.В., Габов Д.Н., Безносиков В.А., Кондратенок Б.М. Накопление полициклических ароматических углеводородов в почвах и растениях тундровой зоны под воздействием угледобывающей промышленности // Почвоведение. 2016. № 11. С. 1402–1412.
  26. Alegbeleye O.O., Opeolu B.O., Jackson V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation // Environ. Management. 2017. V. 60. P. 758–783. https://doi.org/10.1007/s00267-017-0896-2
  27. Amato F., Alastuey A., Karanasiou A., Lucarelli F., Nava S., Calzolai G., Severi M. et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in 5 Southern European cities // Atmospheric Chem. Phys. 2016. V. 16. P. 3289–3309.
  28. Chang K.F., Fang G.C., Chen J.C., Wu Y.S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004 // Environ. Poll. 2006. V. 142. P. 388–396.
  29. Chen S.J., Su H.B., Chang J.E., Lee W.J., Huang K.L., Hsieh L.T., Huang Y.C. et al. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires // Atmospheric Environ. 2007. V. 41. P. 1209-1220.
  30. Dat N.-D., Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies // Sci. Total Environ. 2017. V. 609. P. 682–693.
  31. Demetriades A., Birke M. Urban geochemical mapping manual: sampling, sample preparation, laboratory analysis, quality control check, statistical processing and map plotting. Brussels: EuroGeoSurveys, 2015. 162 p. https://doi.org/10.1016/j.gexplo.2017.10.024
  32. Devos O., Combet E., Tassel P., Paturel L. Exhaust emissions of PAHs of passenger cars // Polycyclic Aromatic Compounds. 2006. V. 26. P. 69–78. https://doi.org/10.1080/10406630500519346
  33. Dickhut R.M., Canuel E.A., Gustafson K.E., Liu K., Arzayus K.M., Walker S.E., Edgecombe G., Gaylor M.O., Macdonald E.H. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region // Environ. Sci. Technol. 2000. V. 34. P. 4635–4640.
  34. Dong Z., Dong Zhe, Zhang R., Li X. Seasonal characterization, sources, and source-specific risks of PM2.5 bound PAHs at different types of urban sites in central China // Atmospheric Pollution Research. 2023. V. 14. P. 101666. https://doi.org/10.1016/j.apr.2023.101666
  35. Fang X., Wu L., Zhang Q., Zhang J., Mao H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement // Transportation Research. 2019. Part D. V. 67. P. 674–684.
  36. Gabov D., Vasilevich M., Yakovleva E., Vasilevich R. Effect of changes in the fuel type of thermal power plants on the spatial distribution and levels of PAH pollution in the Vorkuta agglomeration beyond the Arctic Circle // Atmospheric Environment. 2024. V. 329. P. 120543. https://doi.org/10.1016/j.atmosenv.2024.120543
  37. Gusev A., Batrakova N. Assessment of PAH pollution levels, key sources and trends: contribution to analysis of the effectiveness of the POPs Protocol. Technical Report 2/2020. June 2020. Meteorological Synthesizing Centre – East, Moscow, Russia. 52 p.
  38. Harmsen J., Rietra R.P.J.J. 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil // Chemosphere. 2018. P. 229–238.
  39. Hodson P.V., Wallace S.J., de Solla S.R., Head S.J., Hepditch S.L.J., Parrott J.L., Thomas P.J., Berthiaume A., Langlois V.S. Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments // Environ. Poll. 2020. V. 266. P. 115165. https://doi.org/10.1016/j.envpol.2020.115165
  40. Huang Y., Deng M., Wu S. et al. A modified receptor model for source apportionment of heavy metal pollution in soil // J. Hazard. Mater. 2018. P. 161–169.
  41. Kosheleva N.E., Zhaxylykov N.B., Zavgorodnyaya Yu.A., Kasimov N.S. First Assessment of Soil Cover Pollution with Polycyclic Aromatic Hydrocarbons in the City of Ulan-Ude // Doklady Earth Sci. 2024. V. 518. P. 1770–1775. https://doi.org/10.1134/S1028334X24602888
  42. Larsen R.K., Baker J.E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods // Environ. Sci. Technol. 2003. V. 37. P. 1873–1881.
  43. Li R., Cheng M., Cui Y., He Q., Guo X., Chen L., Wang X. Distribution of the Soil PAHs and Health Risk Influenced by Coal Usage Processes in Taiyuan City, Northern China // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 6319. https://doi.org/10.3390/ijerph17176319
  44. Liu J., Liu Y.J., Liu Z., Zhang A., Liu Y. Source apportionment of soil PAHs and human health exposure risks quantification from sources: the Yulin National Energy and Chemical Industry Base, China as case study // Environ. Geochem. Health. 2019. P. 617–632.
  45. Majumdar D., Rajaram B., Meshram S., Suryawanshi P., Chalapati Rao C.V. Worldwide distribution of polyclyclic aromatic hydrocarbons in urban road dust // Int. J. Environ. Sci. Technol. 2017. V. 14. P. 397. https://doi.org/420
  46. Mętrak M., Chmielewska M., Sudnik-Wójcikowska B., Wiłkomirski B., Staszewski T., Suska-Malawska M. Does the railway function of railway infrastructure determine qualitative and quantitative composition of contaminants (PAHs, heavy metals) in soil and plant biomass? // Water, Air and Soil Pollution. 2015. V. 226. № 8. P. 253–265. https://doi.org/10.1007/s11270-015-2516-1
  47. Nisbet C., LaGoy P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) // Regulatory Toxicology and Pharmacology, 1992, V. 16. P. 290–300. https://doi.org/10.1016/0273-2300(92)90009-X
  48. Peng C., He Y., Zhang K., Zhang Y., Wan X., Wang M., Chen W. Estimating accumulation rates and health risks of PAHs in residential soils of metropolitan cities // J. Environ. Management. 2022. V. 319. P. 115699. https://doi.org/10.1016/j.jenvman.2022.115699
  49. Perrone M.G., Carbone C., Faedo D., Ferrero L., Maggioni A., Sangiorgi G., Bolzacchini E. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes // Atmospheric Environ. 2014. V. 82. P. 391–400.
  50. Qi A., Wang P., Lv J., Zhao T., Huang Q., Wang Y., Zhang X., Wang M., Xiao Y., Yang L., Ji Y., Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport // Ecotoxicol. Environ. Safety. 2023. V. 265. P. 115494. https://doi.org/10.1016/j.ecoenv.2023.115494
  51. Ravindra K., Sokhi R., Grieken R.V. Review: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emissions factors and regulation // Atmospheric Environ. 2008. V. 42. P. 2895-2921.
  52. Shen H., Huang Ye., Wang R., Zhu D., Li W., Shen G., Wang B. et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions // Environ. Sci. Technol. 2013. V. 47. P. 6415–6424.
  53. Song Y., Xie S., Zhang Y. et al. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX // Sci. Total Environ. 2006. V. 372. P. 278–286.
  54. Stogiannidis E., Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities // Rev. Environ. Contaminat. Toxicol. 2015. V. 234. P. 49–133. https://doi.org/10.1007/978-3-319-10638-0_2
  55. Sun P., Yang J., Wu Y., Liu X., Huang Y., He E.-K., He T.-H., Liu M. Spatial modeling and source identification of PAHs in soils and roadside dusts from Hangzhou, a new first-tier megcity of China // J. Hazardous Materials. 2023. V. 460. P. 132366. https://doi.org/10.1016/j.jhazmat.2023.132366
  56. Sushkova S., Minkina T., Deryabkina I., Rajput V., Antonenko E., Nazarenko O., Yadav B.K., Hakki E., Mohan D. Environmental pollution of soil with PAHs in energy producing plants zone // Sci. Total Environ. 2019. V. 655. P. 232–241.
  57. Thurston G.D., Ito K., Lall R. A source apportionment of US fine particulate matter air pollution // Atmospheric environment. 2011. V. 45. P. 3924–3936.
  58. Thurston G.D., Spengler J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston // Atmospheric Environ. 1985. V. 19. P. 9–25.
  59. Vlasov D.V., Vasil’chuk J.Yu., Kosheleva N.E., Kasimov N.S. Contamination levels and source apportionment of potentially toxic elements in size-fractionated road dust of Moscow // Environ. Sci. Poll. Res. 2023. V. 30. P. 38099–38120.
  60. Wang C., Wu S., Zhou S., Shi Y., Song J. Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soils: A Review // Pedosphere. 2017. V. 27. P. 17–26. https://doi.org/10.1016/S1002-0160(17)60293-5
  61. Wang D., Ma J., Li H., Zhang X. Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the Loess Plateau, China // Int. J. Environ. Res. Public Health. 2018. V. 15. P. 1785.
  62. Wang R., Yousaf B., Sun R., Zhang H., Zhang J., Liu G. Emission characterization and δ13C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants // J. Hazardous Materials. 2016. V. 318. P. 487-496. https://doi.org/10.1016/j.jhazmat.2016.07.030
  63. Wilcke W. Polycyclic аromatic hydracarbons (PAHs) in soil – a review // J. Plant Nutr. Soil Sci. 2000. V. 163. P. 229–248.
  64. Yang H.H., Lee W.J., Chen S.J., Lai S. PAH emission from various industrial stacks // J. Hazardous Mater. 1998. V. 60. P. 159–174.
  65. Yang J., Xu W., Cheng H. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China // Atmosphere. 2018. V. 9. P. 63.
  66. Yang Y., Yang X., He M., Christakos G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis // Catena. 2020. P. 104297.
  67. Zavgorodnyaya Yu.A., Chikidova A.L., Biryukov M.V., Demin V.V. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia // Journal of Soils and Sediments. 2019. V. 19. P. 3155–3165. https://doi.org/10.1007/s11368-018-2067-3
  68. Zeng S., Ma J., Ren Y., Liu G-J., Zhang Q., Chen F. Assessing the Spatial Distribution of Soil PAHs and their Relationship with Anthropogenic Activities at a National Scale // Int. J. Environ. Res. Public Health. 2019. V. 16. 22 p.
  69. Zhang Y., Guo Z., Peng C., He Y. Introducing a land use-based weight factor in regional health risk assessment of PAHs in soils of an urban agglomeration // Sci. Total Environ. 2023. V. 887. P. 163833. https://doi.org/10.1016/j.scitotenv.2023.163833
  70. Zhao X., Yang F., Li Z., Tan H. Formation and emission characteristics of PAHs during pyrolysis and combustion of coal and biomass // Fuel. 2024. V. 378. P. 132935. https://doi.org/10.1016/j.fuel.2024.132935
  71. Zheng X., Zhang S., Wu Y., Xu G., Hao J. Measurement of particulate polycyclic aromatic hydrocarbon emissions from gasoline light-duty passenger vehicles // J. Cleaner Production. 2018. V. 185. P. 797–804.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (735KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».