Pre-Eifelian microbial pedogenesis on granite
- Authors: Alekseeva T.V.1, Malyshev V.V.1, Alekseev A.O.1
-
Affiliations:
- Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
- Issue: No 9 (2025)
- Pages: 1103-1117
- Section: GENESIS AND GEOGRAPHY OF SOILS
- URL: https://journal-vniispk.ru/0032-180X/article/view/308161
- DOI: https://doi.org/10.31857/S0032180X25090014
- EDN: https://elibrary.ru/jbaebk
- ID: 308161
Cite item
Abstract
The very first Earth`s terrestrial ecosystems – biocrusts and microbial soils – appeared in Archean. The Proterozoic weathering crust (WC) in Pavlovsk granite quarry (Voronezh region) has the inclusions of granite corestones. WC is directly covered by Mid Devonian deposits. The corestones are surrounded by concentric typically multilayered sheets – rindlets (or crusts). More than 40 specimens of such crusts have been collected and analyzed in detail. Typically, they consist from three layers, some – from two or four with a whole thickness from 4 to 20 cm. XRD data showed that unweathered granite, saprolite (material of WC) and studied corestone crusts consist from quartz, microcline, biotite and kaolinite in different proportions. The obtained data show that crusts contain organic C (0.1–0.5%) and are characterized by the elevated concentrations of Fe, Mg, Mn, Ti, P, S, К. Their layered structure is accompanied by the differentiation of properties: chemical, mineralogical and magnetic. The surface layer is enriched in Fe, Mg, Mn, S and depleted in Al, Si, P, Na. SEM study showed the presence of neo formed silicates (kaolinite and sanidine), gibbsite, Ti-oxides, gypsum. Mossbauer spectroscopy demonstrates the presence of oxides including magnetite, Fe-sulphates, pyrite. SEM study showed the variety of fossilized microbiota: solitary cells of coccoidal shape and their colonies (cyanobacteria?), spores, green algae et al. The obtained data allowed to conclude that rindlets are insitu developed soil like biogenic bodies – microbial paleosols. Their macroscale development and horizontal stratification could say about the long duration (n × 104 years) of terrestrial stage which preceded the formation of Mid-Devonian cover.
About the authors
T. V. Alekseeva
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Email: alekseeva@issp.serpukhov.su
Pushchino, 142290 Russia
V. V. Malyshev
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Email: alekseeva@issp.serpukhov.su
Pushchino, 142290 Russia
A. O. Alekseev
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Author for correspondence.
Email: alekseeva@issp.serpukhov.su
Pushchino, 142290 Russia
References
- Алексеева Т.В. Почвообразование и почвы в девоне и карбоне на территории Северной Евразии: строение, типы, биота, палеоклиматические архивы и стратиграфическая значимость. Дис. … докт. г.-м. наук. М., 2020.
- Алексеева Т.В., Алексеев А.О. Кислая сульфатная палеопочва в отложениях среднего девона на территории Центрального девонского поля (Павловский карьер, Воронежская область) // Почвоведение. 2024. № 1. С. 14–26.
- Вернадский В.И. Избр. соч. Т. I. М.: Изд-во АН, 1959. 694 с.
- Горячкин С.В. География экстремальных почв и почвоподобных систем // Вестник РАН. 2022. Т. 92. № 6. C. 564–571.
- Заварзин Г.А. Начальные этапы эволюции биосферы // Вестник РАН. 2010. Т. 80. C. 1085–1098.
- Заварзин Г.А. Историческая микробиология//Лекции по природоведческой микробиологии. М.: Наука. 2004. С. 297-342.
- Корчагин О.А. Ископаемые микрометеориты, микротектиты и микрокриститы: методика исследований, классификация и импакт-стратиграфическая шкала // Стратиграфия в начале XXI века – тенденции и новые идеи. Очерки по региональной геологии России. М: Геолкарт-ГЕОС, 2013. Вып. 6. С. 112–142.
- Мергелов Н.С., Горячкин С.В., Шоркунов И.Г., Зазовская Э.П., Черкинский А.Е. Эндолитное почвообразование и скальный “загар” на массивно-кристаллических породах в Восточной Антарктике // Почвоведение. 2012. № 10. С. 1027–1044.
- Перельман А.И. Геохимия. М.: Высшая школа. 1989, 528 с.
- Петров В.П. Основы учения о древних корах выветривания. М., Недра, 1967. 340 с.
- Розанов А.Ю., Астафьева М.М. Празинофиты (зеленые водоросли) из нижнего протерозоя Кольского полуострова // Палеонтологический журнал. 2008. № 4. С. 90–93.
- Савко А.Д. Геология Воронежской антеклизы // Тр. НИИ геологии Воронежского гос. ун-та. 2002. Вып. 12. 165 с.
- Синицин В.М. Древние климаты Евразии. Ч. 3. Вторая половина Палеозоя. (девон, карбон, пермь). Л.: Изд-во Ленингр. ун-та, 1970. 131 с.
- Солотчина Э.П. Структурный типоморфизм глинистых минералов осадочных разрезов и кор выветривания. Новосибирск: ГЕО, 2009. 234 с.
- Таргульян В.О., Мергелов Н.С., Горячкин С.В. Почвоподобные тела на Марсе // Почвоведение. 2017. № 2. C. 205–218.
- Тельнова О.П. Морфология и ультраструктура девонских празинофитов (Chlorophyta) // Палеонтологический журнал. 2012. № 5. С. 99–105.
- Яшунский Ю.В., Новикова С.А., Голубев В.К., Новиков И.А., Киселев А.А., Гришин С.В. Аутигенный санидин как минеральный индикатор гравитационно-рассольного катагенеза в отложениях карбона южного крыла Московской синеклизы // Литология и полезные ископаемые. 2020. № 3. С. 227–242.
- Яшунский Ю.В., Новиков И.А., Гришин С.В., Шкурский Б.Б., Альбов Д.В., Быстров И.Г. Замещение карбонатного органогенного детрита калиевым полевым шпатом в московском ярусе среднего карбона Подмосковья // Бюл. Моск. общ. испытателей природы. Отдел геологический. 2017. Т. 92. Вып. 2. С. 58–64.
- Яшунский Ю.В., Новиков И.А., Шкурский Б.Б., Гришин С.В., Кривоконева Г.К., Дубинчук В.Т. Аутигенный калиевый полевой шпат из известняков верхнего карбона Московской области // Бюл. Моск. общ. испытателей природы. Отдел геологический. 2016. Т. 91. Вып. 6. С. 49–61.
- Яшунский Ю.В., Новиков И.А., Федоров А.В., Быстров И.Г., Гришин С.В. Новые находки аутигенного санидина в терригенных и карбонатных породах гжельского яруса Подмосковья // Бюл. Моск. общ. испытателей природы. Отдел геологический. 2018. Т. 93. Вып. 3. С. 73–80.
- Alekseeva T., Kabanov P., Alekseev A., Kalinin P., Alekseeva V. Characteristics of early Earth`s critical zone based on Middle-Late Devonian palaeosols properties (Voronezh High, Russia) // Clays Clay Minerals. 2016. V. 64. P. 677–694.
- Alekseeva T., Kalinin P., Malishev V., Alekseev A. Sulfide oxidation as a trigger for rhyolite weathering and paleosol formation in Devonian (Voronezh High, South Russia) // Catena. 2023. V. 220. P. 106712.
- Brown R.C., Lemmon B.E., Shimamura M., Villarreal J.C., Renzaglia K.S. Spores of relictual bryophytes: Diverse adaptations to life on land // Rev. Palaeobotany Palynology. 2015. V. 216. P. 1–17.
- Colman S.M. Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soil // Geology. 1982. V. 10. P. 370–375.
- Elbert W., Weber B., Burrows S., Steinkamp J., Büdel B., Andreae M.O., Pöschl U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen // Nature Geoscience. 2012. V. 5. P. 459–462.
- Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance // Geology. 1995. V. 23. P. 921–924.
- Fletcher R.C., Buss H.L., Brantley S.L. A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation // Earth Planetary Sci. Lett. 2006. V. 244. P. 444–457.
- Graham R.C., Rossi A.M., Hubbert K.R. Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems // GSA Today. 2010. V. 20. https://doi.org/10.1130/GSAT57A.1
- Hearn P.P., Sutter J. Authigenic potassium feldspar in Cambrian carbonates: evidence of alleghanian brine migration // Science. 1985. V. 228. P. 1529–1531.
- Hewawasam T., von Blanckenburg F., Bouchez J., Dixon J.L., Schuessler J.A., Maekeler R. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical highlands of Sri Lanka // Geochim. Cosmochim. Acta. 2013. V. 118. P. 202–230.
- Hirata Y., Chigira M. Spheroidal weathering of columnar-jointed basalt of the Ogura lava in the Takurayama Volcano, western Japan // E3S Web of Conferences. 2019. V. 98. P. 01021.
- Kassambara A. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning (Multivariate Analysis). Marseille: Sthda, 2017. 188 p.
- Le S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // J. Statistical Software. 2008. V. 25. P. 1–18. https://doi.org/10.18637/jss.v025.i01
- Macholdt D.S., Jochum K.P., Pöhlker C., Arangio A., Förster J.D., Stoll B., et al. Characterization and differentiation of rock varnish types from different environments by microanalytical techniques // Chem. Geol. 2017. V. 459. P. 91–118.
- Mergelov N.S., Shorkunov I.G., Dolgikh A.V., Shishkov V.A., Zazovskaya E.P., Targulian V.O., Goryachkin S.V. Endolithic and hypolithic soil-like systems: structure and composition from the macro- to submicro-levels // Byulleten Pochvennogo instituta im. V.V. Dokuchaeva. 2016. V. 86. P. 103–114.
- Mergelov N.S., Shorkunov I.G., Targulian V.O., Dolgikh A.V. Abrosimov K N. Zazovskaya E.P., Goryachkin S.V. Soil-like patterns inside the rocks: structure, genesis and research techniques // Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems. Springer, 2016. P. 205–222.
- Mössbauer Mineral Handbook / Eds. Stevens J.G., et al. Mössbauer Effect Data Center, 2002.
- Mössbauer Spectroscopy. Еds. Yutaka Yoshida, Guido Langouche. Verlag: Springer, 2013.
- Murad E., Cashion J. Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer, 2004. 418 p.
- Nabhan S., Luber T., Scheffler F., Heubeck C. Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (~3.2 Ga), Barberton Greenstone Belt, South Africa // Precambrian Res. 2016. V. 275. P. 119–134.
- Navarre-Sitchler A.K., Brantley S. Basalt weathering across scales // Earth Planet. Sci. Lett. 2007. V. 261. P. 321–334.
- Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 299. P. 715–717.
- Oberhardt N. Granite weathering, saprolitization and the formation of secondary clay particles, SW Bornholm. Master Thesis, Department of Geosciences. Oslo. 2013. 139 p.
- Ollier C.D. Causes of spheroidal weathering // Earth-Science Rev. 1971. V. 7. P. 127–141.
- Retallack G.J. The oldest known paleosol profiles on Earth: 3.46 Ga Panorama Formation, Western Australia // Palaeogeography, Palaeoclimatology, Palaeoecology. 2018. V. 489. P. 230–248.
- Retallack G.J. Ordovician-Devonian lichen canopies before evolution of woody trees // Gondwana Research. 2022. V. 106. P. 211–223.
- Retallack G.J., Noffke N. Are there ancient soils in the 3.7 Ga Isua Greenstone Belt, Greenland? // Palaeogeography, Palaeoclimatology, Palaeoecology. 2019. V. 514. P. 18–30.
- Sak P.B., Fisher D.M., Gardner T.W., Murphy K., Brantley S.L. Rates of weathering rind formation on Costa Rican basalt // Geochim. Cosmochim. Acta. 2004. V. 68. P. 1453–1472.
- Sak P.B., Navarre-Sitchler A.K., Miller Ch.E., Daniel Ch.C., Gaillardet J., Buss H.L., Lebedeva M.I., Brantley S.L. Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe // Chem. Geol. 2010. V. 276. P. 129–143.
- Scotese C.R. Atlas of Earth history. Paleomap project. University of Texas, 2001. 58 p.
- Sindol G.P., Babechuk M.G., Petrus J.A., Kamber B.S. New insights into Paleoproterozoic surficial conditions revealed by 1.85 Ga corestone-rich saprolith // Chem. Geol. 2020. V. 545. 119621.
- Strother P.K., Taylor W.A. A fossil record of spores before sporophytes // Diversity. 2024. V. 16. P. 428.
- Strullu-Derrien Ch., Fercoq F., Geze M., Kenrick P., Martos F., Selosse M-A., Benzerara K., Knoll A.H. Hapalosiphonacean cyanobacteria (Nostocales) thrived amid emerging embryophytes in an Early Devonian (407-million-year-old) landscape // iScience. 2023. V. 26. P. 107338.
- Taylor K.G., Konhauser K.O. Iron in Earth surface systems: a major player in chemical and biological processes // Elements. 2011. V. 7. P. 83–88.
- Taylor T.N., Taylor E.L., Krings M. Paleobotany and the evolution of plants. Academic Press, 2009. 1253 p.
- Wang K., Alekseeva T., Xu H.-H. Spores constraining age of the Middle Devonian paleosol from Voronezh, Russia and their paleopedological and evolutionary significances // Rev. Paleobot. Palynol. 2025. V. 334. P. 105258.
- Watanabe Y., Martini J.E.J., Ohmoto H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago // Nature. 2000. V. 408. P. 574–578.
- Wellman C.H., Cascales-Miñana B., Servais T. Terrestrialization in the Ordovician // Geolog. Soc. 2022. V. 532. P. 171–190.
- Wright V.P., Mariott S.B., Hillier R.D. Palaeosols and surfaces: what fossil soils tell us about the representation of time in some sedimentary successions. Geological Soc. London: Special Publications, 2025. https://doi.org/10.1144/sp556-2024-37
Supplementary files
