The Impact of Land Management Practices on the Composition and Concentration of Biogenic Elements in the Sod-Podzolic Soils of the Middle Ural Region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In a long-term field study conducted in 1977 on stationary plots of fallow and virgin sod-podzolic heavy loam soil in the Middle Urals, the concentrations and reserves of various biogenic elements were determined. The total carbon reserves were found to decrease in the following sequence: temperate forest, fallow land, typical crop rotation, continuous barley cultivation, continuous bare fallow (from 52.8 to 20.7 t/ha). Total nitrogen reserves ranged from 2.4 to 4.5 t/ha. Under the temperate forest, the labile carbon concentration was 0.87%, the hydrolyzable nitrogen concentration was 478 mg/kg, and the mineral nitrogen concentration was 9.2 mg/kg. Due to the presence of meadow vegetation with a large root system, the soil from a 45-year-old fallow had an organic carbon concentration of 1.62% and a total nitrogen concentration of 1568 mg/kg. Phosphorus reserves varied between 1.7 and 4.4 t/ha, depending on the type of land use, while potassium reserves ranged from 30.3 to 74.9 t/ha. Long-term fallowing of the soil resulted in a 29.1% decrease in the accumulation of organic carbon. The concentration of difficult-to-hydrolysis mineral nitrogen compounds decreased by 544 mg/kg and 30 mg, respectively. The organic phosphorus decreased to 205 mg and the exchangeable potassium to 15.5 mg. A crop rotation with two clover fields and fallowing led to an increase in soil fertility, bringing it closer to that of fallow soil. Agrogenic transformations of carbon, nitrogen, phosphorus, and potassium took place, resulting in a reduction in labile organic matter. This was accompanied by an increase in easily hydrolyzable nitrogen from difficult-to-hydrolysable nitrogen and an increase in available phosphate. Additionally, the available potassium increased in the long-term.

About the authors

N. E. Zavyalova

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: nezavyalova@gmail.com
Lobanovo, Perm district, 614532 Russia

D. S. Fomin

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Lobanovo, Perm district, 614532 Russia

S. S. Polyakova

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Lobanovo, Perm district, 614532 Russia

O. V. Ivanova

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Lobanovo, Perm district, 614532 Russia

Dm. S. Fomin

Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Lobanovo, Perm district, 614532 Russia

References

  1. Билтуев А.С., Будажапов Л.В., Уланов А.К. Особенности изменения фосфатного режима каштановых почв Забайкалья при длительном применении удобрений // Агрохимия. 2021. № 8. С. 3–8. https://doi.org/10.31857/S0002188121080044
  2. Васбиева М.Т. Завьялова Н.Е., Шишков Д.Г. Влияние длительного применения азотных, фосфорных и калийных удобрений на содержание форм соединенный фосфора в дерново-подзолистой почве Предуралья // Почвоведение. 2024. № 8. С. 1125–1132. https://doi.org/10.31857/S0032180Х24080079
  3. Глазовская М.А., Кречетов П.П., Черницова О.В. Общие закономерности накопления и возобновление запасов элементов – органогенов в дерново-подзолистых почвах хвойно-широколиственных лесов // Почвоведение. 2004. № 12. С. 1430–1439.
  4. Дубровина И.А. Изменение фосфатного режима почв средней тайги при применении биоугля // Почвоведение. 2023. № 3. C. 405–414. https://doi.org/10.31857/S0032180X22601116
  5. Дубровина И.А., Мошкина Е.В., Сидорова В.А., Туюнен А.В., Карпечко А.Ю., Геникова Н.В., Медведева М.В., Мамай А.В., Толстогузов О.В., Кулакова Л.М. Влияние типа землепользования на свойства почв и структуру экосистемных запасов углерода в среднетаежной подзоне Карелии // Почвоведение. 2021. № 11. С. 1392–1406. https://doi.org/10.31857/S0032180X21110058
  6. Дубровина И.М., Мошкина Е.В., Туюнен А.В., Геникова Н.В., Карпечко А.Ю, Медведева М.В. Динамика свойств почв и экосистемные запасы углерода при различных типах землепользования (Средняя тайга России) // Почвоведение. 2022. № 9. С. 1112–1125 https://doi.org/10.31857/S0032180Х22090052
  7. Завьяловa Н.Е., Широких И.Г., Васбиевa М.Т., Фомин Д.С. Влияние различных типов землепользования на прокариотные сообщества и стабилизацию органического вещества дерново-подзолистой почвы // Почвоведение. 2021. № 2. С. 232–239. https://doi.org/10.31857/S0032180X21020167
  8. Завьялова Н.Е., Васбиева М.Т., Шишков Д.Г., Казакова И.В. Азотный режим дерново-подзолистой почвы при длительном применении различных видов и сочетаний минеральных удобрений // Российская сельскохозяйственная наука. 2023. № 4. С. 43–47. https://doi.org/10.31857/S2500262722040000
  9. Завьялова Н.Е., Широких И.Г., Ямалтдинова В.Р. Микробиологическое состояние дерново-подзолистой почвы Предуралья при длительном применении органических и минеральных удобрений // Теоретическая и прикладная экология. 2020. № 1. С. 151–159. https://doi.org/10.25750/1995-4301-2020-1-151-159
  10. Калинин А.И. Агроэкологические свойства дерново-подзолистых почв и продуктивность растений. Киров, 2004. 220 с.
  11. Косолапов В.М., Чуйков В.А., Худякова Х.К., Косолапова В.Г. Минеральные элементы в кормах и методы их анализа. М.: ООО “Угрешская типография”, 2019. 272 с.
  12. Кудеяров В.Н. Агрогеохимические циклы углерода и азота в современном земледелии России // Агрохимия. 2019. № 12. С. 3–15. https://doi.org/10.1134/S000218811912007X
  13. Кудеяров В.Н. Баланс азота, фосфора и калия в земледелии России // Агрохимия. 2018. № 10. С. 3–11. https://doi.org/10.1134/S0002188118100101
  14. Кудеяров В.Н. Почвенно-биогеохимические аспекты состояния земледелия в Российской Федерации // Почвоведение. 2019. № 1. С. 109–121. https://doi.org/10.1134/S0032180X1901009X
  15. Кудеяров В.Н. Почвенное дыхание и секвестрация углерода (обзор) // Почвоведение. 2023. № 9. С. 1011–1022. https://doi.org/10.31857/S0032180X23990017
  16. Кудеяров В.Н. Эмиссия закиси азота из почв в условиях применения удобрений (аналитический обзор) // Почвоведение. 2020. № 10. С. 1192–1205. https://doi.org/10.31857/S0032180X2010010X
  17. Мамонтов В.Г., Афанасьев Р.А., Соколовская Е.Л. Лабильные гумусовые вещества, особая группа органических соединений чернозема обыкновенного // Плодородие. 2018. № 4/7. С. 34–36.
  18. Мамонтов В.Г., Родионова Л.П., Быковский Ф.Ф., Сирадж А. Лабильное органическое вещество почвы: Номенклатурная схема, методы изучения и агроэкологические функции // Изв. ТСХА. 2000. Вып. 4. С. 93–108.
  19. Масютенко Н.П. Энергетический потенциал органического вещества черноземов и управление его воспроизводством. Дис. … док. с.-х. наук. М., 2003. 391 с.
  20. Методы определения активных компонентов в составе гумуса. М.: ВНИИА, 2010. 34 с.
  21. Назарюк В.М., Калимуллина Ф.Р. Калийное состояние почвы и продуктивность культур при внесении минеральных удобрений и растительных остатков // Агрохимия. 2023. № 11. С. 3–10. https://doi.org/10.31857/S0002188123110108
  22. Назарюк В.М., Калимуллина Ф.Р. Формы фосфора в эродированных лугово-черноземных почвах Западной Сибири и их роль в минеральном питании растений // Агрохимия. 2021. № 2. С. 11–20. https://doi.org/10.31857/S0002188120120066
  23. Русакова И.В. Сравнительная оценка влияния традиционной и биологизированной систем землепользования на агрохимические, биологические свойства и биологическое качество органического вещества серой лесной почвы Владимирского ополья // Агрохимия. 2021. № 12. С. 15–22. https://doi.org/10.31857/S0002188121120127
  24. Рыжова И.М., Подвезенная М.А., Телеснинa В.М., Богатыревa Л.Г., Семенюк О.В. Оценка запасов углерода и потенциала продуцирования СО2 почвами хвойно-широколиственных лесов // Почвоведение. 2023. № 9. С. 1143–1154. https://doi.org/10.31857/S0032180X23600713
  25. Самофалова И.А. Химический состав почв и почвообразующих пород. Пермь, 2009. 132 с.
  26. Семенов В.М., Лебедева Т.Н., Соколов Д.А., Зинякова Н.Б., Лопес де Гереню В.О., Семенов М.В. Измерение почвенных пулов органического углерода, выделенных био-физико-химическими способами фракционирования // Почвоведение. 2023. № 9. С. 1155–1172. https://doi.org/10.31857/S0032180X23600427
  27. Сычев В.Г., Шафран С.А., Виноградова С.Б. Плодородие почв России и пути его регулирования // Агрохимия. 2020. № 6. С. 3–13. https://doi.org/10.31857/S0002188120060125
  28. Трофимов С.Н., Коваленко А.А. Фосфатное состояние и изменение плодородия дерново-подзолистой почвы в длительных полевых опытах // Агрохимия. 2017. № 8. С. 3–15. https://doi.org/10.7868/S000288117080014
  29. Фокин А.Д. Устойчивость почв и наземных экосистем: Подходы к систематизации понятий и оценке // Изв. ТСХА. 1995. № 2. С. 71.
  30. Шафран С.А., Кирпичников Н.А. Научные основы прогнозирования содержания подвижных форм фосфора и калия в почвах // Агрохимия. 2019. № 4. С. 3–10. https://doi.org/10.1134/S0002188119040112
  31. Шеуджен А.Х., Бондарева Т.Н., Лебедовский И.А., Осипов М.А. Агрохимия биогенных элементов: учеб. пособие. Краснодар, КубГАУ. 2020. 223 с.
  32. Шишов Л.Л., Когут Б.М. Уровни содержания гумуса в пахотных черноземах и агроэкологический принцип определения потребности сельскохозяйственных культур в органических удобрениях // Сб. докл. Междунар. науч.-пр. конф. Владимир, 2004. С. 32–34.
  33. Шульц Э., Кершенс М. Характеристика разлагаемой части органического вещества почв и ее трансформация при помощи экстракции горячей водой // Почвоведение. 1998. № 7. С. 890–894.
  34. Якименко В.Н. Баланс калия, урожайность культур и калийное состояние почвы в длительном полевом опыте в лесостепи Западной Сибири // Агрохимия. 2019. № 10. С. 16–24.
  35. Якименко В.Н. Фиксация калия и магния почвой агроценоза // Агрохимия. 2023. № 3. С. 3–11. https://doi.org/10.31857/S0002188123030134
  36. Global Carbon Project. Supplemental data of Global Carbon Budget 2022. Version 1.0. Data set. Global Carbon Project. 2022. https://doi.org/10.18160/gcp-2022
  37. Jonczak J., Simansky V., Pollakova N. Content and profile distribution of phosphorus fractions in arable and forest Cambic Chernozems // Sylwan. 2015. V. 159. P. 931–939.
  38. Pereira P. Ecosystem services in a changing environment // Sci. Total Environ. 2020. V. 702. Р. 135008. https://doi.org/10.1016/j.scitotenv.2019.135008
  39. Tian J., Pausch J., Yu G., Blagodatskaya E., Gao Y., Kuzyakov Y. Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect // Appl. Soil Ecol. 2015. V. 90. P. 1–10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».