Developing a spatial soil database with environmental variables: The Republic of Bashkortostan experience
- Authors: Suleymanov A.R.1,2,3
-
Affiliations:
- Ufa State Petroleum Technological University
- Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Ufa University of Science and Technology
- Issue: No 10 (2025)
- Pages: 1282-1292
- Section: GENESIS AND GEOGRAPHY OF SOILS
- URL: https://journal-vniispk.ru/0032-180X/article/view/308806
- DOI: https://doi.org/10.31857/S0032180X25100043
- EDN: https://elibrary.ru/juunwj
- ID: 308806
Cite item
Abstract
The aim of this work is to create and harmonize a spatial soil database with environmental variables (covariates) for the Republic of Bashkortostan (Russia). The database was compiled using data from field surveys, reports, published scientific works, and existing databases. The largest sample of soil parameters included pH KCl, Corg content and nutrients, the thickness of the humus-accumulative horizon. Among them, the most extensive data were obtained for pH KCl and Corg, comprising 32 144 and 29 491 measurements, respectively. For the republic, 82 spatial variables were selected and harmonized, reflecting the main soil-forming factors. This database is fully ready for “data-driven” research, including processing and modeling using artificial intelligence techniques. Among the main limitations is the insufficient amount of data from mountainous landscapes, highlighting the need for further soil data collection in these regions. The results presented for Bashkortostan can serve as a starting point for developing regional soil databases and collecting spatial environmental information.
About the authors
A. R. Suleymanov
Ufa State Petroleum Technological University; Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology
Author for correspondence.
Email: filpip@yandex.ru
Ufa, 450064 Russia; Ufa, 450054 Russia; Ufa, 450076 Russia
References
- Голозубов О.М., Чернова О.В. Динамическое формирование и обновление карты запасов органического углерода на территории России как задача интеллектуального анализа Больших данных // Интеллектуальные системы. Теория и приложения. 2022. Т. 26. № 1. С. 153–159.
- Гопп Н.В., Мешалкина Ю.Л., Нарыкова А.Н., Плотникова А.С., Чернова О.В. Картографирование содержания и запасов органического углерода почв на региональном и локальном уровнях: анализ современных методических подходов // Вопросы лесной науки. 2023. Т. 6. № 1. С. 120. https://doi.org/10.31509/2658-607x-202361-120
- Коноплина Л.Ю., Мешалкина Ю.Л., Самсонова В.П., Голозубов О.М. Картографирование содержания гумуса в пахотных почвах Брянской области методами машинного обучения по данным Агрохимслужбы // Вестник Моск. ун-та. Сер. 17, почвоведение. 2024. Т. 79. № 4. C. 130–140.
- Национальный атлас почв Российской Федерации. М.: Астрель. 2011. 632 C.
- Почвенная карта РСФСР. Под ред. В.М. Фридланда, Масштаб 1 : 2 500 000. М.: ГУГУК, 1988
- Савин И.Ю., Жоголев А.В, Прудникова Е.Ю. Современные тренды и проблемы почвенной картографии // Почвоведение. 2019. № 5. С. 517–528.
- Хазиев Ф.Х., Мукатанов А.Х., Хабиров И.К., Кольцова Г.А., Габбасова И.М., Рамазанов Р.Я. Почвы Башкортостана. Эколого-генетическая и агропроизводственная характеристика. Уфа: Гилем, 1995. Т. 1. 384 с.
- Чернова О.В., Голозубов О.М., Алябина И.О., Щепащенко Д.Г. Комплексный подход к картографической оценке запасов органического углерода в почвах России // Почвоведение. 2021. № 3. C. 273–286.
- Шоба С.А., Алябина И.О., Голозубов О.М., Чекмарёв П.А., Лукин С.В., Чернова О.В., Колесникова В.М. Опыт создания информационной системы в целях рационального использования почвенных ресурсов // Вестник Моск. ун-та. Сер. 17, почвоведение. 2023. № 4. С. 1–28. https://doi.org/10.55959/MSU0137-0944-17-2023-78-4-14-28
- Adhikari K., Hartemink A.E., Minasny B., Bou Kheir R.M., Greve B., Greve M.H. Digital mapping of soil organic carbon contents and stocks in Denmark // PloS One. 2014. V. 9(8). P. e105519. https://doi.org/10.1371/journal.pone.0105519
- Batjes N.H., Calisto L., de Sousa L.M. Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023) // Earth System Science Data. 2024. V. 16. P. 4735–4765. https://doi.org/10.5194/essd-16-4735-2024
- Bishop T.F.A., McBratney A.B., Laslett G.M. Modelling soil attribute depth functions with equal-area quadratic smoothing splines // Geoderma. 1999. V. 91. P. 27–45. https://doi.org/10.1016/S0016-7061(99)00003-8
- Bontemps S., Radoux J., Defourny P., Eric V., Lamarche C., Frédéric A., Mayaux P. et al. Consistent global land cover maps for climate modelling communities: current achievements of the esa’ land cover cci. consistent global land cover maps for climate modelling communities // Proceedings of the ESA Living Planet Symposium, Edinburgh, Scotland. 2013. P. 9–13.
- Chen S., Arrouays D., Leatitia Mulder V., Poggio L., Minasny B., Roudier P., Libohova Z. et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review // Geoderma. 2022. V. 409. P. 115567. https://doi.org/10.1016/j.geoderma.2021.115567
- Chen S., Chen Z., Zhang X., Luo Z., Schillaci C., Arrouays D., Richer-de-Forges A., Shi Z. European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions // Earth System Sci. Data. 2024. V. 16. P. 2367–2383. https://doi.org/10.5194/essd-16-2367-2024
- Chinilin A., Savin I.Yu. Combining machine learning and environmental covariates for mapping of organic carbon in soils of Russia // Egypt. J. Remote Sensing Space Sci. 2023. V. 26. P. 666–675. https://doi.org/10.1016/j.ejrs.2023.07.007
- Dinerstein E., Olson D., Joshi A., Vynne C., Burgess N.D., Wikramanayake E., Hahn N., et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm // BioScience. 2017. V. 67. P. 534–545. https://doi.org/10.1093/biosci/bix014
- Fan Y., Li H., Miguez-Macho G. Global Patterns of Groundwater Table Depth // Science. 2013. V. 339. P. 940–943. https://doi.org/10.1126/science.1229881
- Fick S.E., Hijmans R.J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas // Int. J. Climatol. 2017. V. 37. P. 4302–4315. https://doi.org/10.1002/joc.5086
- Gomes L.C., Faria R.M., de Souza E., Veloso G.V., Schaefer C.E.G.R., Filho E.I.F. Modelling and mapping soil organic carbon stocks in Brazil // Geoderma. 2019. V. 340. P. 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007
- Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines // Machine Learning. 2002. V. 46. P. 389–422. https://doi.org/10.1023/A:1012487302797
- Han S.Y., Filippi P., Singh K., Whelan B., Bishop T. Assessment of global, national, and regional-level digital soil mapping products at different spatial supports // Eur. J. Soil Sci. 2022. V. 73. P. e13300. https://doi.org/10.1111/ejss.13300
- Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D. et al. High-Resolution global maps of 21st-century forest cover change // Science. 2013. V. 342(6160). P. 850–853. https://doi.org/10.1126/science.1244693
- Hartmann J., Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface // Geochemistry, Geophysics, Geosystems. 2012. V. 13. P. 2012GC004370. https://doi.org/10.1029/2012GC004370
- Helfenstein A., Mulder V.L., Hack-ten Broeke, M.J.D., van Doorn M., Teuling K., Walvoort D.J.J., Heuvelink G.B.M. BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands // Earth System Science Data. 2024. V. 16. P. 2941–2970. https://doi.org/10.5194/essd-16-2941-2024
- Hengl T., Jesus J.M. de, Heuvelink G.B.M., Gonzalez M.R., Kilibarda M., Blagotić A., Shangguan W. et al. SoilGrids250m: Global gridded soil information based on machine learning // PLOS ONE. 2017. V. 12. P. e0169748. https://doi.org/10.1371/journal.pone.0169748
- Hijmans R. Terra: Spatial Data Analysis. R package version 1.8-45. 2025. https://github.com/rspatial/terra
- Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. Climatologies at high resolution for the earth’s land surface areas // Scientific Data. 2017. V. 4. P. 170122. https://doi.org/10.1038/sdata.2017.122
- Krasilnikov P. Soil priorities in Russia // Geoderma Regional. 2022. V. 29. P. e00538. https://doi.org/10.1016/j.geodrs.2022.e00538
- Lamichhane S., Kumar L., Wilson B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review // Geoderma. 2019. V. 352. P. 395–413. https://doi.org/10.1016/j.geoderma.2019.05.031
- Liu F., Wu H., Zhao Y., Li D., Yang J.-L., Song X., Shi Z., Zhu A.-X., Zhang G.-L. Mapping high resolution National Soil Information Grids of China // Sci. Bull. 2022. V. 67. P. 328–340. https://doi.org/10.1016/j.scib.2021.10.013
- Ma Y., Minasny B., McBratney A., Poggio L., Fajardo M. Predicting soil properties in 3D: Should depth be a covariate? // Geoderma. 2021. V. 383. P. 114794. https://doi.org/10.1016/j.geoderma.2020.114794
- McBratney A.B., Mendonça Santos M.L., Minasny B. On digital soil mapping // Geoderma. 2003. V. 117. P. 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
- Michéli E., Csorba Á., Láng V., Szegi T., Székács A., Várszegi G., Fuchs M., Pásztor L., Dobos E. Soil priorities for Hungary // Geoderma Regional. 2022. V. 29. P. e00521. https://doi.org/10.1016/j.geodrs.2022.e00521
- Mulder V.L., Lacoste M., Richer-de-Forges A.C., Arrouays D. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth // Sci. Total Environ. 2016. V. 573. P. 1352–1369. https://doi.org/10.1016/j.scitotenv.2016.07.066
- Orgiazzi A., Ballabio C., Panagos P., Jones A., Fernández-Ugalde O. LUCAS Soil, the largest expandable soil dataset for Europe: a review // Eur. J. Soil Sci. 2018. V. 69. P. 140–153. https://doi.org/10.1111/ejss.12499
- Pekel J.-F., Cottam A., Gorelick N., Belward A.S. High-resolution mapping of global surface water and its long-term changes // Nature. 2016. V. 540(7633). P. 418–422. https://doi.org/10.1038/nature20584
- Pelletier J.D., Broxton P.D., Hazenberg P., Zeng X., Troch P.A., Niu G., Williams Z.C., Brunke M.A., Gochis D. Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers // ORNL DAAC. 2016. https://doi.org/10.3334/ORNLDAAC/1304
- Pfeiffer M., Padarian J., Osorio R., Bustamante N., Olmedo G.F., Zagal E., et al. CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort // Earth System Sci. Data. 2020. V. 12. P. 457–468. https://doi.org/10.5194/essd-12-457-2020
- Poggio L., de Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty // Soil. 2021. V. 7. P. 217–240. https://doi.org/10.5194/soil-7-217-2021
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/
- Rasmussen C., Asefaw-Berhe A., Turco R. Soil science research priorities in the United States // Geoderma Regional. 2022. V. 29. P. e00526. https://doi.org/10.1016/j.geodrs.2022.e00526
- Robinson N., Regetz J., Guralnick R.P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data // ISPRS J. Photogramm. Remote Sensing. 2014. V. 87. EarthEnv-DEM90. P. 57–67. https://doi.org/10.1016/j.isprsjprs.2013.11.002
- Savtchenko A., Ouzounov D., Ahmad S., Acker J., Leptoukh G., Koziana J., Nickless D. Terra and Aqua MODIS products available from NASA GES DAAC: Trace Constituents in the Troposphere and Lower Stratosphere // Adv. Space Res. 2004. V. 34. P. 710–714. https://doi.org/10.1016/j.asr.2004.03.012
- Sayre R., Dangermond J., Frye C., Vaughan R., Aniello P., Breyer S., Cribbs D. et al. A New Map of Global Ecological Land Units – An Ecophysiographic Stratification Approach. 2014. https://doi.org/10.13140/2.1.2167.8887
- Shi G., Sun W., Shangguan W., Wei Z., Yuan H., Li L., Sun X., Zhang Y., Liang H., Li D., Huang F., Li Q., Dai Y. A China dataset of soil properties for land surface modelling (version 2, CSDLv2) // Earth System Sci. Data. 2025. V. 17. P. 517–543. https://doi.org/10.5194/essd-17-517-2025
- Strobl C., Boulesteix A.-L., Zeileis A., Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution // BMC Bioinformatics. 2007. V. 8. P. 25. https://doi.org/10.1186/1471-2105-8-25
- Suleymanov A., Abakumov E., Alekseev I., Nizamutdinov T. Digital Mapping of Soil Properties in the High Latitudes of Russia Using Sparse Data // Geoderma Regional. 2024. V. 36. P. e00776. https://doi.org/10.1016/j.geodrs.2024.e00776.
- Suleymanov A., Arrouays D., Savin I. Digital soil mapping in the Russian Federation: A review // Geoderma Regional. 2024. V. 36. P. e00763. https://doi.org/10.1016/j.geodrs.2024.e00763
- Suleymanov A., Richer-de-Forges A.C., Saby N.P.A., Arrouays D., Martin M.P., Bispo A. National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France // Geoderma Regional. 2024. V. 37. P. e00801. https://doi.org/10.1016/j.geodrs.2024.e00801
- Szatmári G., Laborczi A., Mészáros J., Takács K., Benő A., Koós S., Bakacsi Z., Pásztor L. Gridded, temporally referenced spatial information on soil organic carbon for Hungary // Scientific Data. 2024. V. 11. P. 1312. https://doi.org/10.1038/s41597-024-04158-3
- Terribile F., Basile A., Bonifacio E., Corti G., Ferraro G., Mileti F.A., Munafò M. The sustainable use of soils: A journey from wicked problems to wicked solutions for soil policy // Soil Security. 2024. V. 17. P. 100174. https://doi.org/10.1016/j.soisec.2024.100174
- Tuanmu M.-N., Jetz W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling // Global Ecology and Biogeography. 2015. V. 24. P. 1329–1339. https://doi.org/10.1111/geb.12365
- Wilson A.M., Jetz W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions // PLOS Biol. 2016. V. 14. P. e1002415. https://doi.org/10.1371/journal.pbio.1002415
- Žížala D., Minařík R., Skála J., Beitlerová H., Juřicová A., Reyes Rojas J., Penížek V., Zádorová T. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic // Catena. 2022. V. 212. P. 106024. https://doi.org/10.1016/j.catena.2022.106024
Supplementary files
