Composition and structure of the nematode communities of Nitisols, Acrisols and suspended soil of Bale national park (Southeastern Ethiopia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nematode complexes of the forest soils of the National Park Bale in Ethiopia (southern macro slope) were investigated in the end of wet season. The nematodes of ground soils (Nitisols, Acrisols) formed in Hagenia and Hagenia-Juniperus forests and suspended soils formed in Hagenia abyssinica canopy were compared. The nematodes were extracted by the Baermann technique with subsequent determination of total numbers, taxonomic diversity and trophic groups. The status of ecosystems was determined based on values of ecological indices. The number of nematodes in suspended soils was several times higher than in forest soils, with the biomass of animals ten times greater. The bacterivorous nematodes prevailed in all soil types; in the suspended soil their percentage was 75%. The plant parasites and fungivorous nematodes were few in suspended soil compared to Acrisols and Nitisols. In the suspended soils that were less diverse and structural, the fast-reproducing genera-colonizers prevailed. Acrobeloides, Plectus and Rhabditis were eudominantes in the suspended soils, whereas Panagrolaimus, Helicotylenchus and Mesodorylaimus in Nitisols. The trophic webs of all three types of soil are mature, stable, with low level of disturbance.

About the authors

V. D. Migunova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: barbarusha@rambler.ru
Moscow, 119071 Russia

L. B. Rybalov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Moscow, 119071 Russia

References

  1. Вилленав С., Сере Д., Шварц К., Ватто Ф., Жимене А., Корте Ж. Быстрые изменения сообществ почвенных нематод в первые годы после создания Technosols для рекультивации участка индустриальной пустоши // Почвоведение. 2018. № 10. С. 1274–1282. https://doi.org/10.1134/S0032180X18100143
  2. Воробьева Л.А. Химический анализ почв. М.: Изд-во Моск. ун-та, 1998. 272 с.
  3. Еськов А.К., Коломейцева Г.Л. Сосудистые эпифиты–растения, порвавшие с землей // Журнал общей биологии. 2021. Т. 82. № 5. С. 337–367.
  4. Кирьянова Е.С., Кралль Э.Л. Паразитические нематоды растений и меры борьбы с ними. Л.: Наука, 1969. Т. 1. 447 с.
  5. Соловьева Г.И., Васильева А.П., Груздева Л.И. Свободноживущие и фитопаразитические нематоды северо-запада СССР. Л.: Наука, 1976. 107 с.
  6. Abakumov E.V., Rodina O.A., Eskov A.K. Humification and humic acid composition of suspended soil in oligotrophous environments in South Vietnam // Appl. Environ. Soil Sci. 2018. P. 1026237.
  7. Abakumov E., Eskov A. Organic matter structural composition of vascular epiphytic suspended soils of South Vietnam // Appl. Sci. 2023. V. 13. P. 4473. https://doi.org/10.3390/app13074473
  8. Abbate E., Bruni P., Sagri M. Geology of Ethiopia: a review and geomorphological perspectives // Landscapes and Landforms of Ethiopia. 2015. P. 33–64.
  9. Abebe E., Tesfamariam M., Awol S., Beira H.M., Mesfin W., Temesgen A., Gezahegn G., Birhan A.A. Research on Plant Parasitic and Entomopathogenic Nematodes in Ethiopia: A Review of Current State and Future Direction // Nematology. 2015. V. 17. P. 741–759. https://doi.org/10.1163/15685411-00002919
  10. Alemayehu T. Diversity and ecology of vascular epiphytes in Harenna afromontane forest. Dissertation. Bale, 2006. 64 p.
  11. Bardgett R.D., van der Putten W.H. Belowground biodiversity and ecosystem functioning // Nature. 2014. V. 515(7528). P. 505–511.
  12. Bongers T., Ferris H. Nematode community structure as a bioindicator in environmental monitoring // Trends Ecology Evolution. 1999. V. 14. Р. 224–228. http://doi.org/10.1016/S0169-5347(98)01583-3
  13. Beaulieu F., Walter D.E., Proctor H.C., Kitching R.L. The canopy starts at 0.5 m: predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height // Biotropica. 2010. V. 42. P. 704–709.
  14. Beyene S., Regassa A., Mishra B.B., Haile M. The Soils of Ethiopia. Springer Nature, 2023. 349 p.
  15. Chaerle P., Viane R. A new species of Asplenium (Aspleniaceae, Pteridophyta) from Ethiopia // Novon: J. Botanical Nomenclature. 2009. V. 17. P. 148–153.
  16. Donald J., Bonnett S., Cutler M., Majalap N., Maxfield P., & Ellwood M. F. Physical conditions regulate the fungal to bacterial ratios of a tropical suspended soil // Forests. 2017. V. 8. P. 474.
  17. Du Preez G., Daneel M., De Goede R., Du Toit M.J., Ferris H., Fourie H., Geisen S., Kakouli-Duarte T., Korthals G., Sánchez-Moreno S., Schmidt J.H. Nematode-based indices in soil ecology: application, utility, and future directions // Soil. Biol. Biochem. 2022. V. 169. P. 108640.
  18. Ellwood M.D.F., Foster W.A. Doubling the estimate of invertebrate biomass in a rainforest canopy // Nature. 2004. V. 429(6991). P. 549–551.
  19. Elias E. Soils of the Ethiopian Highlands: Geomorphology and Properties. Altera, 2016. 385 p.
  20. Enloe H.A., Graham R.C., Sillett S.C. Arboreal histosols in old-growth redwood forest canopies, northern California // Soil Sci. Soc. Am. J. 2006. V. 70. P. 408–418.
  21. Ermilov S.G., Rybalov L.B. New faunistic and taxonomic data on oribatid mites (Acari, Oribatida) from Ethiopia: results of the Joint Russian–Ethiopian Biological Expedition in Bale Mountains National Park (2023) // Acarologia. 2024. V. 64. P. 891–906.
  22. Eskov A.K., Zverev A.O., Abakumov E.V. Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other // Microorganisms. 2021. V. 9. P. 1033.
  23. Ferris H., Bongers T., Goede R.G. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept // Appl. Soil Ecology. 2001. V. 18. Р. 13–29.
  24. Ferris H. Form and function: Metabolic footprints of nematodes in the soil food web // Eur. J. Soil Biol. 2010. V. 46. P. 97–104.
  25. Gotsch S.G., Nadkarni N., Amici A. The functional roles of epiphytes and arboreal soils in tropical montane cloud forests // J. Tropical Ecology. 2016. V. 32. P. 455–468.
  26. Kidane Y.O., Steinbauer M.J., Beierkuhnlein C. Dead end for endemic plant species? A biodiversity hotspot under pressure // Global Ecol. Conservat. 2019. V. 19. P. e00670.
  27. Kniazeva A.V., Lysak L.V., Manucharova N.A., Lapygina E.V., Aleksandrova A.V. Abundance and Taxonomic Diversity of Prokaryotes in Fluvisol and Associated Substrates (Vietnam, Pu Hoat Reserve) // Eurasian Soil Science. 2022. V. 55. P. 1460–1469. https://doi.org/10.1134/S1064229322100076
  28. Melakeberhan H., Maung Z., Lartey I., Yildiz S., Gronseth J., Qi, J., Karuku G., Kimenju J., Kwoseh Ch., Adjei-Gyapong T. Nematode community-based soil food web analysis of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi reveals distinct soil health degradations // Diversity. 2021.V. 13. P. 101.
  29. McSorley R. Ecology of the dorylaimid omnivore genera Aporcelaimellus, Eudorylaimus and Mesodorylaimus // Nematology. 2012. V. 14. P. 645–663.
  30. Migunova V.D., Kurakov A.V. Structure of the microbial biomass and trophic groups of nematodes in soddy-podzolic soils of a postagrogenic succession in the southern taiga (Tver oblast) // Eurasian Soil Science. 2014. V. 47. P. 453–458.
  31. Migunova V.D., Tabolin S.B., Rybalov L.B. Ecological Structure of Soil Nematode Communities of Southern Chukotka // Eurasian Soil Science. 2024. V. 57. 1343–1352.
  32. Muhammed A., Elias E. The effects of landscape change on plant diversity and structure in the Bale Mountains National Park, Southeastern Ethiopia // Int. J. Ecology. 2021. V. 2021. P. 6628282.
  33. Ortega-Solis G., Díaz I.A., Mellado-Mansilla D., Tejo C., Tello F., Craven D., Kreft H., Armesto J.J. Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions // bioRxiv. 2021. V. 22. P. 449473. https://doi.org/10.1101/2021.06.22.449473
  34. Osmaston H.A., Mitchell W.A., Osmaston J.A.N. Quaternary glaciation of the Bale mountains, Ethiopia // J. Quarter. Sci. 2005. Т. 20. P. 593–606.
  35. Potapov A., Bonnier R., Sandmann D., Wang S., Widyastuti R., Scheu S., Krashevska V. Aboveground soil supports high levels of biological activity in oil palm plantations // Frontiers Ecol. Environ. 2020. V. 18. P. 181–187.
  36. Rodina O.A., Abakumov E.V., Eskov A.K., Prilepskiy N.G. Humic substances formation as a result of biogenic-abiogenic interactions in epiphytic structures of the South Vietnam tropical forest // Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Springer International Publishing, 2020. P. 417–434.
  37. Rønn R., Vestergård M., Ekelund F. Interactions between bacteria, protozoa and nematodes in soil // Acta Protozoologica. 2012. V. 51. 223–235.
  38. Siebert S., Ramdhani S. The Bale mountains of Ethiopia: feature // Veld Flora. 2004. V. 90. P. 54–59.
  39. Sieriebriennikov B., Ferris H., de Goede, Ninja R.G. An automated calculation system for nematode-based biological monitoring // Eur. J. Soil Biol. 2014. V. 61. Р. 90–93.
  40. Small R.W.S. A review of the prey of predatory soil nematodes // Pedobiologia. 1987. V. 30. P. 179–206.
  41. Shokoohi E., Moyo N., Gouveia F. Relationship of nematodes in natural and disturbed land with physicochemical properties in Magoebaskloof, Limpopo Province, South Africa // Biologia. 2023. V. 78. P. 3223–3233.
  42. Tsalolikhin S.J. Review of the fauna of free-living nematodes from inland waters of Ethiopia // Zoosystematica Rossica.1995. V. 4. P. 205–218.
  43. Wardle D.A., Yeates G.W., Barker G.M., Bellingham P.J., Bonner, K.I., & Williamson W.M. Island biology and ecosystem functioning in epiphytic soil communities // Science. 2003. V. 301(5640). P. 1717–1720.
  44. World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome, 2015.
  45. Yeates G.W., Bongers T., De Goede R.J.M., Freckmann D.V., Georgieva S.S. Feeding habits in soil nematode fauna and genera: an online for soil ecologist // J. Nematology. 1993. V. 25. P. 315–331.
  46. Yeates G.W. Nematodes as soil indicators: functional and biodiversity aspects // Biol. Fertil. Soils. 2003. V. 37. P. 199–210. http://nemaplex.ucdavis.edu/Uppermnus/topmnu.htm

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».