Micromorphometric parameters of aggregates of plowed typical noneroded and severely eroded Chernozems (case study)
- Authors: Plotnikova O.O.1, Komkova D.S.1, Danilin I.V.1, Masyutenko N.P.2, Kuznetsov A.V.2, Masyutenko M.N.2
-
Affiliations:
- Dokuchaev Soil Science Institute
- Federal Agricultural Kursk Research Center
- Issue: No 6 (2025)
- Pages: 857-868
- Section: БИОЛОГИЯ ПОЧВ
- URL: https://journal-vniispk.ru/0032-180X/article/view/295115
- DOI: https://doi.org/10.31857/S0032180X25060084
- EDN: https://elibrary.ru/ATARCC
- ID: 295115
Cite item
Abstract
To create a digital soil twin, it is necessary to define and formalize as many indicators as possible reflecting its functioning in the landscape, as well as various degradation and progradation processes. The aim of the work was to identify the influence of soil properties (the content of silt, dust, sand, organic carbon (Corg) and calcium carbonate (Ccarb)) and factors of plowing and water erosion on the morphometric parameters (MP) of aggregates of arable and sub-arable layers of noneroded and severely eroded typical Chernozems (Experimental field, Kursk FARC). A significant positive correlation with the minimum diameter of aggregates was revealed for Ccarb of severely eroded Chernozems and Corg of noneroded Chernozems. Within all size classes of aggregates, the effect of the content of Corg and Ccarb and various granulometric fractions, as well as the degree of manifestation of erosive processes (on the binary scale noneroded / severely eroded) on MP was not revealed. At the same time, neither the above-mentioned soil factors nor the size class of the aggregate affect the elongation and orientation of the aggregates, while the form factor and the unevenness of the boundary decrease and increase accordingly with increasing size of the aggregates. Our study, which is innovative in many aspects, shows that the factor of water erosion has a significant effect on the physical and chemical properties of the upper horizons of plowed Chernozems. However, a detailed analysis of the MP of soil aggregates revealed that in the presence of such a powerful factor as regular agricultural processing, the factor of water erosion manifests itself only at a depth of 20–30 cm, where the influence of the anthropogenic factor weakens, and the influence of natural soil properties is stronger. At the same time, the results obtained indicate the resistance of most MP aggregates of Chernozems to water erosion if it is accompanied by annual plowing of the soil. We also showed that the unevenness of the boundary of aggregates depends more on their size than on the degree of soil erosion. Presumably, the processes of water erosion and plowing have an indirect effect on this morphometric parameter, regulating the composition of the dimensional fractions of soil aggregates.
Full Text

About the authors
O. O. Plotnikova
Dokuchaev Soil Science Institute
Author for correspondence.
Email: mrs.plotnikova@mail.ru
Russian Federation, Moscow, 119017
D. S. Komkova
Dokuchaev Soil Science Institute
Email: mrs.plotnikova@mail.ru
Russian Federation, Moscow, 119017
I. V. Danilin
Dokuchaev Soil Science Institute
Email: mrs.plotnikova@mail.ru
Russian Federation, Moscow, 119017
N. P. Masyutenko
Federal Agricultural Kursk Research Center
Email: mrs.plotnikova@mail.ru
Russian Federation, Kursk, 305021
A. V. Kuznetsov
Federal Agricultural Kursk Research Center
Email: mrs.plotnikova@mail.ru
Russian Federation, Kursk, 305021
M. N. Masyutenko
Federal Agricultural Kursk Research Center
Email: mrs.plotnikova@mail.ru
Russian Federation, Kursk, 305021
References
- Афанасьева Е.А. Черноземы Средне-Русской возвышенности. М.: Наука, 1966. 224 c.
- Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 c.
- Воронин А.Д. Основы физики почв. М.: Изд-во МГУ, 1986. 243 c.
- Воронин А.Д. Учебное руководство к полевой практике по физике почв. М.: Изд-во МГУ, 1988. 89 c.
- Заславский М.Н. Эрозиоведение. М.: Высшая школа, 1983. 320 c.
- Качинский Н.А. Структура почвы. М.: Изд-во МГУ, 1963. 100 c.
- Классификация и диагностика почв СССР. М.: Колос, 1977. 224 c.
- Марголина Н.Я., Александровский А.Л., Ильичев Б.А., Черкинский А.Е., Чичагова О.А. Возраст и эволюция черноземов. М.: Наука, 1988. 142 c.
- Масютенко Н.П., Глазунов Г.П., Кузнецов А.В., Масютенко М.Н. Система показателей агроэкологической оценки эродированных черноземов // Достижения науки и техники АПК. 2016. № 11. C. 7–11.
- Медведев В.В. Механизмы формирования макроагрегатов черноземов // Почвоведение. 1994. № 11. C. 24–30.
- Муха В.Д. Почвы Курской области. Курск: Изд-во Курс. гос. с.-х. акад., 2006. 119 c.
- Афонский В.Л., Зайцев С.Н., Пузанов В.П. Пат. СССР № 1030724. 1983. № 3395572.
- Плотникова О.О., Куст П.Г., Романис Т.В., Лебедев М.А. Методическое руководство по компьютерному анализу изображений почвенных шлифов с использованием программного обеспечения Thixomet Pro. М.: Почв. ин-т им. В.В. Докучаева, 2022. 64 с.
- Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 c.
- Скворцова Е.Б., Морозов Д.Р. Микроморфометрическая классификация и диагностика строения порового пространства почвы // Почвоведение. 1993. № 6. C. 49–56.
- Хитров Н.Б., Понизовский А.А. Руководство по лабораторным методам исследования ионно-солевого состава нейтральных и щелочных минеральных вод. М.: Почв. ин-т им. В.В. Докучаева, 1990. 236 c.
- Bronick C.J., Lal R. Soil structure and management: A review // Geoderma. 2005. V. 124. P. 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
- Farkhodov Y.R., Nikitin D.A., Yaroslavtseva N.V., Maksimovich S.V., Ziganshina A.R., Danilin I.V., Kholodov V.A. et al. Composition of organic matter and biological properties of eroded and aggraded soils of a small catchment in the forest-steppe zone of the Central Russian Upland // Eurasian Soil Sci. 2024. V. 57. P. 1474–1486. https://doi.org/10.1134/S106422932460115X
- Filippova O.I., Kholodov V.A., Safronova N.A., Yudina A.V., Kulikova N.A. Particle-size, microaggregate-size, and aggregate-size distributions in humus horizons of the zonal sequence of soils in European Russia // Eurasian Soil Sci. 2019. V. 52. P. 300–312. https://doi.org/10.1134/S1064229319030037
- Gemtou M., Kakkavou K., Anastasiou E., Fountas S., Pedersen S.M., Isakhanyan G., Erekalo K.T., Pazos-Vidal S. Farmers’ transition to climate-smart agriculture: a systematic review of the decision-making factors affecting adoption // Sustainability. 2024. V. 16. P. 2828. https://doi.org/10.3390/su16072828
- Gennadiev A.N., Zhidkin A.P., Olson K.R., Kachinskii V.L. Soil erosion under different land uses: Assessment by the magnetic tracer method // Eurasian Soil Sci. 2010. V. 43. P. 1047–1054. https://doi.org/10.1134/S1064229310090127
- Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems // Transdisciplinary Perspectives on Complex Systems. Springer Cham: Springer Int. Publ., 2017. P. 85–113. https://doi.org/10.1007/978-3-319-38756-7_4
- Guidelines for soil description. Rome: FAO, 2006. 97 p.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. No. 106. Rome: FAO, 2015. 192 p.
- Jarvis S., Tisdall J., Oades M., Six J., Gregorich E., Kögel‐Knabner I. Landmark papers // Eur. J. Soil Sci. 2012. V. 63. P. 1–21. https://doi.org/10.1111/j.1365–2389.2011.01408.x
- Kassambara A., Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020.
- Kay B.D. Soil Structure and organic carbon: a review // Soil Processes and the Carbon Cycle. CRC Press, 2018. P. 169–197. https://doi.org/ 10.1201/9780203739273-13
- Kholodov V.A. The capacity of soil particles for spontaneous formation of macroaggregates after a wetting-drying cycle // Eurasian Soil Sci. 2013. V. 46. P. 660–667. https://doi.org/10.1134/S1064229313040078
- Kholodov V.A., Yaroslavtseva N. V., Farkhodov Yu.R., Belobrov V.P., Yudin S.A., Aydiev A.Ya., Lazarev V.I., Frid A.S. Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use // Eurasian Soil Sci. 2019. V. 52. P. 162–170. https://doi.org/10.1134/S1064229319020066
- Kubiena W.L. Die mikromorphometrische Bodenanalyse, Stuttgart: Enke, 1967. 224 p.
- Marcelino V., Cnudde V., Vansteelandt S., Carò F. An evaluation of 2D‐image analysis techniques for measuring soil microporosity // Eur. J. Soil Sci. 2007. V. 58. P. 133–140. https://doi.org/10.1111/j.1365–2389.2006.00819.x
- Meusburger K., Mabit L., Park J.-H., Sandor T., Alewell C. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea // Biogeosciences. 2013. V. 10. P. 5627–5638. https://doi.org/10.5194/bg-10-5627-2013
- Monteiro J., Barata J. the circular digital twin: climate-smart soils as a use case // 32nd Int. Conf. Information Systems Development. ISD2024, Gdańsk, 2024. 4 https://doi.org/10.62036/ISD.2024.107
- Mukhtar H., Wunderlich R.F., Lin Y.-P. Digital twins of the soil microbiome for climate mitigation // Environments. 2022. V. 9. P. 34. https://doi.org/10.3390/environments9030034
- Perfect E., Zhai Q., Blevins R. L. Soil and tillage effects on the characteristic size and shape of aggregates // Soil Sci. Soc. Am. J. 1997. V. 61. P. 1459–1465. https://doi.org/10.2136/sssaj1997.03615995006100050025x
- Plotnikova O.O., Demidov V.V., Farkhodov Yu.R., Tsymbarovich P.R., Semenkov I.N. Influence of water erosion on soil aggregates and organic matter in arable chernozems: case study // Agronomy. 2024. V. 14. P. 1607. https://doi.org/10.3390/agronomy14081607
- Portes R., Dahms D., Brandová D., Raab G., Christl M., Kühn P., Ketterer M., Egli M. Evolution of soil erosion rates in alpine soils of the Central Rocky Mountains using fallout Pu and δ13C // Earth Planet. Sci. Lett. 2018. V. 496. P. 257–269. https://doi.org/10.1016/j.epsl.2018.06.002
- R Core Team R: A language and environment for statistical computing. 2024.
- Raj P., Surianarayanan P. Digital twin: the industry use cases // Adv. Computers. 2020. V. 117. P. 285–320. https://doi.org/10.1016/bs.adcom.2019.09.006
- Ringrose-Voase A. Micromorphology of soil structure – description, quantification, application // Soil Res. 1991. V. 29. P. 777. https://doi.org/10.1071/SR9910777
- Silva L., Rodríguez-Sedano F., Baptista P., Coelho J.P. The digital twin paradigm applied to soil quality assessment: a systematic literature review // Sensors. 2023. V. 23. P. 1007. https://doi.org/10.3390/s23021007
- Soderstrom N.C., Yue C.L., Bjork E.L. Metamemory and education // The Oxford Handbook of Metamemory / Eds. Dunlosky J., Tauber S. (Uma) K. Oxford University Press, 2015. P. 197–217. https://doi.org/10.1093/oxfordhb/9780199336746.013.6
- Stoops G. Guidelines for analysis and description of soil and regolith thin sections. Madison: Soil Science Society of America, Inc., 2021. 259 p. https://doi.org/10.2136/2003.guidelinesforanalysis
- Targulian V.O., Krasilnikov P.V. Soil system and pedogenic processes: self-organization, time scales, and environmental significance // Catena. 2007. V. 71. P. 373–381. https://doi.org/10.1016/j.catena.2007.03.007
- Tenu I., Jitareanu G., Muraru-Ionel C., Cojocariu P., Muraru V.M. The impact of mechanization technologies on soil // Environ. Engineer. Management J. 2009. V. 8. P. 1263–1267. https://doi.org/10.30638/eemj.2009.185
- Tisdall J.M., Oades J.M. Organic matter and water-stable aggregates in soils // J. Soil Sci. 1982. V. 33. P. 141–163. https://doi.org/10.1111/j.1365–2389.1982.tb01755.x
- Verdouw C., Sundmaeker H., Tekinerdogan B., Conzon D., Montanaro T. Architecture framework of IoT-based food and farm systems: A multiple case study // Computers and Electronics in Agriculture. 2019. V. 165. P. 104939. https://doi.org/10.1016/j.compag.2019.104939
- Vereecken H., Schnepf A., Hopmans J.W., Javaux M., Or D., Roose T., Vanderborght J. et al. Modeling soil processes: review, key challenges, and new perspectives // Vadose Zone J. 2016. V. 15. P. 1–57. https://doi.org/10.2136/vzj2015.09.0131
- Vogel H., Balseiro‐Romero M., Kravchenko A., Otten W., Pot V., Schlüter S., Weller U., Baveye P.C. A holistic perspective on soil architecture is needed as a key to soil functions // Eur. J. Soil Sci. 2022. V. 73. P. e13152 https://doi.org/10.1111/ejss.13152
- Wang H., Wu W., Zhou Y., Sun Y., Zhao Z., Hu L., Zheng Q. Review on image-based non-destructive observation methods for soil meso-liquefaction process // Bull. Engineer. Geol. Environ. 2024. V. 83. P. 233. https://doi.org/10.1007/s10064-024-03734-6
- Wickham H. Ggplot2: Elegant graphics for data analysis. N.Y.: Springer-Verlag, 2016. 260 p.
- Yudin S.A., Plotnikova O.O., Belobrov V.P., Lebedeva M.P., Abrosimov K.N., Ermolaev N.R. Quantitative characteristics of the microstructure of typical chernozems under different agricultural technologies // Eurasian Soil Sci. 2023. V. 56. P. 807–817. https://doi.org/10.1134/S1064229323600343
- Zia-ur-Rehman, M., Murtaza G., Qayyum M.F., Saifullah Rizwan, M., Ali S., Akmal F., Khalid H. Degraded soils: origin, types and management // Soil Science: Agricultural and Environmental Prospectives / Eds. Hakeem K.R., Akhtar J., Sabir M. Springer Int. Publ., 2016. P. 23–65. https://doi.org/10.1007/978-3-319-34451-5_2
Supplementary files
