On the motion of a material point on a fixed ellipsoidal surface

Cover Page

Cite item

Full Text

Abstract

The nonlinear dynamics of a point that remains throughout its motion on the inner part of an absolutely smooth surface of a fixed triaxial ellipsoid is studied. The motion occurs in a uniform field of gravity, the largest of the axes of the ellipsoid is directed along the vertical. The main attention is paid to the motions of the point near its stable equilibrium position at the lowest point of the ellipsoid‘s surface lying on its vertical axis. A qualitative description of conditionally periodic oscillations of the point is given, and an estimate of the measure of the set of initial conditions corresponding to these oscillations is defined. In the resonant case, when the ratio of the frequencies of small linear oscillations is equal to two, the periodic motions of the point are studied; the question of their existence, stability and geometric representation is considered.

Full Text

Современные технические устройства зачастую содержат в себе элементы малых размеров, движущиеся по неподвижным (или медленно перемещающимся в пространстве) поверхностям, являющимися частью устройства.

В статье исследуется движение материальной точки по неподвижной абсолютно гладкой поверхности в однородном поле тяжести. Предполагается, что поверхность является частью поверхности трехосного эллипсоида, одна из осей которого вертикальна.

Существует устойчивое положение равновесия, когда материальная точка покоится в лежащей на этой оси наинизшей точке поверхности. Основное внимание в статье уделяется анализу нелинейных колебаний (условно-периодических и периодических) точки в окрестности этого устойчивого положения равновесия. Анализ осуществляется при помощи современных методов и алгоритмов аналитического и численного исследования динамических систем, описываемых уравнениями Гамильтона [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 5].

1. Введение. Функция Гамильтона. Пусть материальная точка весом mg MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyBaiaadEgaaa a@3975@  движется в однородном поле тяжести, все время оставаясь на внутренней части неподвижной абсолютно гладкой эллипсоидальной поверхности

ξ 2 a 2 + η 2 b 2 + ς 2 c 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqaH+o aEdaahaaWcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaeq4TdG2aaWbaaSqabeaacaaIYa aaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWc aaqaaiabek8awnaaCaaaleqabaGaaGOmaaaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaaaaOGaeyypa0JaaGymaaaa@48C7@   (a<b<c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadggacq GH8aapcaWGIbGaeyipaWJaam4yaiaacMcaaaa@3DAD@  (1.1)

Ось Oς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiabek8awb aa@3A10@  направлена вверх. Предполагается, что движение происходит в области cς<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0Iaam4yai abgsMiJkabek8awjabgYda8iaaicdaaaa@3E84@ , поэтому координаты ξ,η,ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aOjaacYcacqaHcpGvaaa@3E0B@  точки удовлетворяют уравнению

ς=c 1 ξ 2 a 2 η 2 b 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyLaeyypa0 JaeyOeI0Iaam4yamaakaaabaGaaGymaiabgkHiTmaalaaabaGaeqOV dG3aaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCaaaleqabaGaaG OmaaaaaaGccqGHsisldaWcaaqaaiabeE7aOnaaCaaaleqabaGaaGOm aaaaaOqaaiaadkgadaahaaWcbeqaaiaaikdaaaaaaaqabaaaaa@47DA@  (1.2)

Потенциальная и кинетическая энергии вычисляются по формулам

Π=mgς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiOdaLaeyypa0 JaamyBaiaadEgacqaHcpGvaaa@3D9E@ , T= 1 2 m( ξ ˙ 2 + η ˙ 2 + ς ˙ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivaiabg2da9m aalaaabaGaaGymaaqaaiaaikdaaaGaamyBaiaacIcacuaH+oaEgaGa amaaCaaaleqabaGaaGOmaaaakiabgUcaRiqbeE7aOzaacaWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIafqOWdyLbaiaadaahaaWcbeqaaiaa ikdaaaGccaGGPaaaaa@4714@  ( ς ˙ = ς ξ ξ ˙ + ς η η ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGafqOWdyLbaiaacq GH9aqpdaWcaaqaaiabgkGi2kabek8awbqaaiabgkGi2kabe67a4baa cuaH+oaEgaGaaiabgUcaRmaalaaabaGaeyOaIyRaeqOWdyfabaGaey OaIyRaeq4TdGgaaiqbeE7aOzaacaaaaa@4B1F@  ), (1.3)

где точкой обозначена производная по времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiDaaaa@3890@ .

Существует очевидное положение равновесия ξ=η=0,ς=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 Jaeq4TdGMaeyypa0JaaGimaiaacYcacqaHcpGvcqGH9aqpcqGHsisl caWGJbaaaa@42FC@ . По теореме Лагранжа это положение равновесия устойчиво, так как в нем потенциальная энергия имеет строгий локальный минимум [6]. Цель статьи состоит в исследовании нелинейных колебаний точки вблизи этого положения равновесия.

Рассматриваемая механическая система является консервативной и имеет две степени свободы. Величины ξ,η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aObaa@3BB6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  обобщенные координаты, а соответствующие обобщенные импульсы задаются равенствами

p ξ = T ξ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacqaH+oaEaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGa eyOaIyRafqOVdGNbaiaaaaaaaa@410C@ , p η = T η ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacqaH3oaAaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGubaabaGa eyOaIyRafq4TdGMbaiaaaaaaaa@40DE@

Найдя отсюда величины ξ ˙ , η ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGafqOVdGNbaiaaca GGSaGafq4TdGMbaiaaaaa@3BC8@  как функции ξ,η, p ξ , p η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aOjaacYcacaWGWbWaaSbaaSqaaiabe67a4bqabaGccaGGSaGa amiCamaaBaaaleaacqaH3oaAaeqaaaaa@42D1@  и подставив их в выражение T+Π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivaiabgUcaRi abfc6aqbaa@3AD0@ , получим функцию Гамильтона H(ξ,η, p ξ , p η ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiaacIcacq aH+oaEcaGGSaGaeq4TdGMaaiilaiaadchadaWgaaWcbaGaeqOVdGha beaakiaacYcacaWGWbWaaSbaaSqaaiabeE7aObqabaGccaGGPaaaaa@4501@ . Уравнения движения запишутся в виде

dξ dt = H p ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaeqOVdGhabaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacqGHciIT caWGibaabaGaeyOaIyRaamiCamaaBaaaleaacqaH+oaEaeqaaaaaki aacYcaaaa@4482@   dη dt = H p η , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb Gaeq4TdGgabaGaamizaiaadshaaaGaeyypa0ZaaSaaaeaacqGHciIT caWGibaabaGaeyOaIyRaamiCamaaBaaaleaacqaH3oaAaeqaaaaaki aacYcaaaa@4454@   d p ξ dt = H ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamiCamaaBaaaleaacqaH+oaEaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaeyOeI0YaaSaaaeaacqGHciITcaWGibaabaGaeyOaIyRaeq OVdGhaaaaa@44BF@ , d p η dt = H η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamiCamaaBaaaleaacqaH3oaAaeqaaaGcbaGaamizaiaadshaaaGa eyypa0JaeyOeI0YaaSaaaeaacqGHciITcaWGibaabaGaeyOaIyRaeq 4TdGgaaaaa@4491@

Для удобства дальнейших вычислений целесообразно получить уравнения движения в безразмерной форме. Для этого сделаем каноническое (с валентностью 1/(mc gc ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaac+caca GGOaGaamyBaiaadogadaGcaaqaaiaadEgacaWGJbaaleqaaOGaaiyk aaaa@3E31@  ) преобразование [6, 7] ξ,η, p ξ , p η q 1 , q 2 , p 1 , p 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aOjaacYcacaWGWbWaaSbaaSqaaiabe67a4bqabaGccaGGSaGa amiCamaaBaaaleaacqaH3oaAaeqaaOGaeyOKH4QaamyCamaaBaaale aacaaIXaaabeaakiaacYcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadchadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiCamaaBa aaleaacaaIYaaabeaaaaa@4E6A@  по формулам

ξ= ac q 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 ZaaOaaaeaacaWGHbGaam4yaaWcbeaakiaadghadaWgaaWcbaGaaGym aaqabaaaaa@3E30@ , η= bc q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 ZaaOaaaeaacaWGIbGaam4yaaWcbeaakiaadghadaWgaaWcbaGaaGOm aaqabaaaaa@3E1B@ , p ξ =mc g a p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacqaH+oaEaeqaaOGaeyypa0JaamyBaiaadogadaGcaaqaamaalaaa baGaam4zaaqaaiaadggaaaaaleqaaOGaamiCamaaBaaaleaacaaIXa aabeaaaaa@4148@ , p η =mc g b p 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacqaH3oaAaeqaaOGaeyypa0JaamyBaiaadogadaGcaaqaamaalaaa baGaam4zaaqaaiaadkgaaaaaleqaaOGaamiCamaaBaaaleaacaaIYa aabeaaaaa@4133@

и введем еще безразмерное время τ= g/c t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiXdqNaeyypa0 ZaaOaaaeaacaWGNbGaai4laiaadogaaSqabaGccaWG0baaaa@3E07@ .

Несложные выкладки показывают, что в новых переменных уравнения движения примут вид

d q j dτ = H p j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamyCamaaBaaaleaacaWGQbaabeaaaOqaaiaadsgacqaHepaDaaGa eyypa0ZaaSaaaeaacqGHciITcaWGibaabaGaeyOaIyRaamiCamaaBa aaleaacaWGQbaabeaaaaGccaGGSaaaaa@44D2@   d p j dτ = H q j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamiCamaaBaaaleaacaWGQbaabeaaaOqaaiaadsgacqaHepaDaaGa eyypa0JaeyOeI0YaaSaaaeaacqGHciITcaWGibaabaGaeyOaIyRaam yCamaaBaaaleaacaWGQbaabeaaaaaaaa@4505@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@ , (1.4)

где

H= ω 1 [1 ω 1 q 1 2 + ω 2 ( ω 2 2 1) q 2 2 ] p 1 2 2 ω 1 2 ω 2 2 q 1 q 2 p 1 p 2 + ω 2 [1 ω 2 q 2 2 + ω 1 ( ω 1 2 1) q 1 2 ] p 2 2 2[1+ ω 1 ( ω 1 2 1) q 1 2 + ω 2 ( ω 2 2 1) q 2 2 ] 1 ω 1 q 1 2 ω 2 q 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGibGaey ypa0ZaaSaaaeaacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaGGBbGa aGymaiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaakiaadghada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcqaHjpWDdaWgaaWc baGaaGOmaaqabaGccaGGOaGaeqyYdC3aa0baaSqaaiaaikdaaeaaca aIYaaaaOGaeyOeI0IaaGymaiaacMcacaWGXbWaa0baaSqaaiaaikda aeaacaaIYaaaaOGaaiyxaiaadchadaqhaaWcbaGaaGymaaqaaiaaik daaaGccqGHsislcaaIYaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI YaaaaOGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaamyCam aaBaaaleaacaaIXaaabeaakiaadghadaWgaaWcbaGaaGOmaaqabaGc caWGWbWaaSbaaSqaaiaaigdaaeqaaOGaamiCamaaBaaaleaacaaIYa aabeaakiabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiaacUfa caaIXaGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaamyCam aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiabeM8a3naaBaaa leaacaaIXaaabeaakiaacIcacqaHjpWDdaqhaaWcbaGaaGymaaqaai aaikdaaaGccqGHsislcaaIXaGaaiykaiaadghadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccaGGDbGaamiCamaaDaaaleaacaaIYaaabaGaaG OmaaaaaOqaaiaaikdacaGGBbGaaGymaiabgUcaRiabeM8a3naaBaaa leaacaaIXaaabeaakiaacIcacqaHjpWDdaqhaaWcbaGaaGymaaqaai aaikdaaaGccqGHsislcaaIXaGaaiykaiaadghadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqaba GccaGGOaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeyOe I0IaaGymaiaacMcacaWGXbWaa0baaSqaaiaaikdaaeaacaaIYaaaaO GaaiyxaaaacqGHsislaeaacqGHsisldaGcaaqaaiaaigdacqGHsisl cqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaWGXbWaa0baaSqaaiaaig daaeaacaaIYaaaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaikdaaeqa aOGaamyCamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaaaaaa@AC74@ (1.5)

Здесь

ω 1 = c a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGJbaabaGaamyyaaaa aaa@3D39@ , ω 2 = c b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGJbaabaGaamOyaaaa aaa@3D3B@  ( ω 1 > ω 2 >1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyOpa4JaeqyYdC3aaSbaaSqaaiaaikdaaeqa aOGaeyOpa4JaaGymaaaa@3FDF@  ) (1.6)

Величины (1.6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  это отвечающие безразмерному времени τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiXdqhaaa@395C@  частоты малых линейных колебаний в окрестности изучаемого равновесия ξ=η=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 Jaeq4TdGMaeyypa0JaaGimaaaa@3DCC@ , ς=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyLaeyypa0 JaeyOeI0Iaam4yaaaa@3C17@  которому в новых переменных соответствует решение q 1 = q 2 = p 1 = p 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaaIXaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamiCam aaBaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaa@4405@  уравнений (1.4).

Отметим, что функция Гамильтона (1.5) не изменяется, если индексы входящих в нее величин поменять местами, т.е.

H( q 1 , q 2 , p 1 , p 2 ; ω 1 , ω 2 )H( q 2 , q 1 , p 2 , p 1 ; ω 2 , ω 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiaacIcaca WGXbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadghadaWgaaWcbaGa aGOmaaqabaGccaGGSaGaamiCamaaBaaaleaacaaIXaaabeaakiaacY cacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaai4oaiabeM8a3naaBaaa leaacaaIXaaabeaakiaacYcacqaHjpWDdaWgaaWcbaGaaGOmaaqaba GccaGGPaGaeyyyIORaamisaiaacIcacaWGXbWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadghadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam iCamaaBaaaleaacaaIYaaabeaakiaacYcacaWGWbWaaSbaaSqaaiaa igdaaeqaaOGaai4oaiabeM8a3naaBaaaleaacaaIYaaabeaakiaacY cacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@5EDC@  (1.7)

Вблизи решения q 1 = q 2 = p 1 = p 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaaIXaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamiCam aaBaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaa@4405@  функция Гамильтона (1.5) представима в виде сходящегося ряда по формам четных степеней:

H= 1 2 ω 1 ( q 1 2 + p 1 2 )+ 1 2 ω 2 ( q 2 2 + p 2 2 )+ s=2 H 2s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9m aalaaabaGaaGymaaqaaiaaikdaaaGaeqyYdC3aaSbaaSqaaiaaigda aeqaaOGaaiikaiaadghadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccq GHRaWkcaWGWbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaiykaiab gUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeqyYdC3aaSbaaSqaai aaikdaaeqaaOGaaiikaiaadghadaqhaaWcbaGaaGOmaaqaaiaaikda aaGccqGHRaWkcaWGWbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaai ykaiabgUcaRmaaqahabaGaamisamaaBaaaleaacaaIYaGaam4Caaqa baaabaGaam4Caiabg2da9iaaikdaaeaacqGHEisPa0GaeyyeIuoaaa a@5BCE@ , H 2s = ν 1 + ν 2 + μ 1 + μ 2 =2s h ν 1 ν 2 μ 1 μ 2 q 1 ν 1 q 2 ν 2 p 1 μ 1 p 2 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaaIYaGaam4CaaqabaGccqGH9aqpdaaeqbqaaiaadIgadaWgaaWc baGaeqyVd42aaSbaaWqaaiaaigdaaeqaaSGaeqyVd42aaSbaaWqaai aaikdaaeqaaSGaeqiVd02aaSbaaWqaaiaaigdaaeqaaSGaeqiVd02a aSbaaWqaaiaaikdaaeqaaaWcbeaakiaadghadaqhaaWcbaGaaGymaa qaaiabe27aUnaaBaaameaacaaIXaaabeaaaaGccaWGXbWaa0baaSqa aiaaikdaaeaacqaH9oGBdaWgaaadbaGaaGOmaaqabaaaaOGaamiCam aaDaaaleaacaaIXaaabaGaeqiVd02aaSbaaWqaaiaaigdaaeqaaaaa aSqaaiabe27aUnaaBaaameaacaaIXaaabeaaliabgUcaRiabe27aUn aaBaaameaacaaIYaaabeaaliabgUcaRiabeY7aTnaaBaaameaacaaI XaaabeaaliabgUcaRiabeY7aTnaaBaaameaacaaIYaaabeaaliabg2 da9iaaikdacaWGZbaabeqdcqGHris5aOGaamiCamaaDaaaleaacaaI YaaabaGaeqiVd02aaSbaaWqaaiaaikdaaeqaaaaaaaa@6B62@ (1.8)

В разложении (1.8) величина H 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaaIWaaabeaakiabg2da9iabgkHiTiaaigdaaaa@3C02@ , равная значению функции H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaaaa@3864@  на решении q 1 = q 2 = p 1 = p 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaaIXaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaamiCam aaBaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaa@4405@ , отброшена.

Из 35-ти коэффициентов формы H 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaaI0aaabeaaaaa@394E@  отличны от тождественного нуля только следующие 6 коэффициентов:

h 4000 = 1 8 ω 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaI0aGaaGimaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaiIdaaaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYa aaaaaa@41AA@ , h 2200 = 1 4 ω 1 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIYaGaaGOmaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaisdaaaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeq yYdC3aaSbaaSqaaiaaikdaaeqaaaaa@43A8@ , h 2020 = 1 2 ω 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIYaGaaGimaiaaikdacaaIWaaabeaakiabg2da9iabgkHiTmaa laaabaGaaGymaaqaaiaaikdaaaGaeqyYdC3aa0baaSqaaiaaigdaae aacaaI0aaaaaaa@4293@

h 1111 = ω 1 2 ω 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIXaGaaGymaiaaigdacaaIXaaabeaakiabg2da9iabgkHiTiab eM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiabeM8a3naaDaaale aacaaIYaaabaGaaGOmaaaaaaa@4486@ , h 0400 = 1 8 ω 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIWaGaaGinaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaiIdaaaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYa aaaaaa@41AB@ , h 0202 = 1 2 ω 2 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIWaGaaGOmaiaaicdacaaIYaaabeaakiabg2da9iabgkHiTmaa laaabaGaaGymaaqaaiaaikdaaaGaeqyYdC3aa0baaSqaaiaaikdaae aacaaI0aaaaaaa@4294@  (1.9)

Из 84-х коэффициентов формы H 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaaI2aaabeaaaaa@3950@  отличны от нуля только 10 коэффициентов:

h 6000 = 1 16 ω 1 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaI2aGaaGimaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaigdacaaI2aaaaiabeM8a3naaDaaaleaacaaIXaaaba GaaG4maaaaaaa@4266@ , h 4200 = 3 16 ω 1 2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaI0aGaaGOmaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aG4maaqaaiaaigdacaaI2aaaaiabeM8a3naaDaaaleaacaaIXaaaba GaaGOmaaaakiabeM8a3naaBaaaleaacaaIYaaabeaaaaa@4526@ , h 4020 = 1 2 ω 1 5 ( ω 1 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaI0aGaaGimaiaaikdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI1a aaaOGaaiikaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiab gkHiTiaaigdacaGGPaaaaa@482F@ , h 3111 = ω 1 3 ω 2 2 ( ω 1 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIZaGaaGymaiaaigdacaaIXaaabeaakiabg2da9iabeM8a3naa DaaaleaacaaIXaaabaGaaG4maaaakiabeM8a3naaDaaaleaacaaIYa aabaGaaGOmaaaakiaacIcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGccqGHsislcaaIXaGaaiykaaaa@4A22@

h 2220 = 1 2 ω 1 4 ω 2 ( ω 2 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIYaGaaGOmaiaaikdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI0a aaaOGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaaiikaiabeM8a3naa DaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaaaaa@4AEE@ , h 2202 = 1 2 ω 1 ω 2 4 ( ω 1 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIYaGaaGOmaiaaicdacaaIYaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeq yYdC3aa0baaSqaaiaaikdaaeaacaaI0aaaaOGaaiikaiabeM8a3naa DaaaleaacaaIXaaabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaaaaa@4AED@ , h 2400 = 3 16 ω 1 ω 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIYaGaaGinaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aG4maaqaaiaaigdacaaI2aaaaiabeM8a3naaBaaaleaacaaIXaaabe aakiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaaaaa@4526@  (1.10)

h 1311 = ω 1 2 ω 2 3 ( ω 2 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIXaGaaG4maiaaigdacaaIXaaabeaakiabg2da9iabeM8a3naa DaaaleaacaaIXaaabaGaaGOmaaaakiabeM8a3naaDaaaleaacaaIYa aabaGaaG4maaaakiaacIcacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHsislcaaIXaGaaiykaaaa@4A23@ , h 0402 = 1 2 ω 2 5 ( ω 2 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIWaGaaGinaiaaicdacaaIYaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI1a aaaOGaaiikaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiab gkHiTiaaigdacaGGPaaaaa@4831@ , h 0600 = 1 16 ω 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAamaaBaaale aacaaIWaGaaGOnaiaaicdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaigdacaaI2aaaaiabeM8a3naaDaaaleaacaaIYaaaba GaaG4maaaaaaa@4267@

2. О нормальной форме функции Гамильтона возмущенного движения. Вместо переменных q j , p j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGQbaabeaakiaacYcacaWGWbWaaSbaaSqaaiaadQgaaeqaaaaa @3C72@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  введем новые канонически сопряженные переменные Q j , P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaWGQbaabeaakiaacYcacaWGqbWaaSbaaSqaaiaadQgaaeqaaaaa @3C32@  при помощи близкого к тождественному канонического преобразования, задаваемого неявно формулами [3, 4, 6]

p j = S q j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaam4uaaqaaiab gkGi2kaadghadaWgaaWcbaGaamOAaaqabaaaaaaa@407C@ , Q j = S P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaam4uaaqaaiab gkGi2kaadcfadaWgaaWcbaGaamOAaaqabaaaaaaa@403C@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@ ,  (2.1)

где

S= q 1 P 1 + q 2 P 2 + S 4 ( q 1 , q 2 , P 1 , P 2 )+ S 6 ( q 1 , q 2 , P 1 , P 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uaiabg2da9i aadghadaWgaaWcbaGaaGymaaqabaGccaWGqbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyCamaaBaaaleaacaaIYaaabeaakiaadcfada WgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaaisda aeqaaOGaaiikaiaadghadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam yCamaaBaaaleaacaaIYaaabeaakiaacYcacaWGqbWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaadcfadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaey4kaSIaam4uamaaBaaaleaacaaI2aaabeaakiaacIcacaWGXbWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiaadghadaWgaaWcbaGaaGOmaa qabaGccaGGSaGaamiuamaaBaaaleaacaaIXaaabeaakiaacYcacaWG qbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@5C9B@

S 2k = ν 1 + ν 2 + μ 1 + μ 2 =2k s ν 1 ν 2 μ 1 μ 2 q 1 ν 1 q 2 ν 2 P 1 μ 1 P 2 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaaIYaGaam4AaaqabaGccqGH9aqpdaaeqbqaaiaadohadaWgaaWc baGaeqyVd42aaSbaaWqaaiaaigdaaeqaaSGaeqyVd42aaSbaaWqaai aaikdaaeqaaSGaeqiVd02aaSbaaWqaaiaaigdaaeqaaSGaeqiVd02a aSbaaWqaaiaaikdaaeqaaaWcbeaakiaadghadaqhaaWcbaGaaGymaa qaaiabe27aUnaaBaaameaacaaIXaaabeaaaaGccaWGXbWaa0baaSqa aiaaikdaaeaacqaH9oGBdaWgaaadbaGaaGOmaaqabaaaaOGaamiuam aaDaaaleaacaaIXaaabaGaeqiVd02aaSbaaWqaaiaaigdaaeqaaaaa aSqaaiabe27aUnaaBaaameaacaaIXaaabeaaliabgUcaRiabe27aUn aaBaaameaacaaIYaaabeaaliabgUcaRiabeY7aTnaaBaaameaacaaI XaaabeaaliabgUcaRiabeY7aTnaaBaaameaacaaIYaaabeaaliabg2 da9iaaikdacaWGRbaabeqdcqGHris5aOGaamiuamaaDaaaleaacaaI YaaabaGaeqiVd02aaSbaaWqaaiaaikdaaeqaaaaaaaa@6B28@   (k=2,3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadUgacq GH9aqpcaaIYaGaaiilaiaaiodacaGGPaaaaa@3D0F@  (2.2)

Из (2.1),(2.2) следует, что q j , p j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGQbaabeaakiaacYcacaWGWbWaaSbaaSqaaiaadQgaaeqaaaaa @3C72@  выражаются через новые переменные Q j , P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaWGQbaabeaakiaacYcacaWGqbWaaSbaaSqaaiaadQgaaeqaaaaa @3C32@  при помощи сходящихся рядов по степеням Q 1 , Q 2 , P 1 , P 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaaIXaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadcfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiuamaaBa aaleaacaaIYaaabeaaaaa@40B9@ :

q j = Q j S 4 * P j + 2 S 4 * P j Q 1 S 4 * P 1 + 2 S 4 * P j Q 2 S 4 * P 2 S 6 * P j + O 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGQbaabeaakiabg2da9iaadgfadaWgaaWcbaGaamOAaaqabaGc cqGHsisldaWcaaqaaiabgkGi2kaadofadaqhaaWcbaGaaGinaaqaai aacQcaaaaakeaacqGHciITcaWGqbWaaSbaaSqaaiaadQgaaeqaaaaa kiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam 4uamaaDaaaleaacaaI0aaabaGaaiOkaaaaaOqaaiabgkGi2kaadcfa daWgaaWcbaGaamOAaaqabaGccqGHciITcaWGrbWaaSbaaSqaaiaaig daaeqaaaaakmaalaaabaGaeyOaIyRaam4uamaaDaaaleaacaaI0aaa baGaaiOkaaaaaOqaaiabgkGi2kaadcfadaWgaaWcbaGaaGymaaqaba aaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWGtbWaa0baaSqaaiaaisdaaeaacaGGQaaaaaGcbaGaeyOaIyRaam iuamaaBaaaleaacaWGQbaabeaakiabgkGi2kaadgfadaWgaaWcbaGa aGOmaaqabaaaaOWaaSaaaeaacqGHciITcaWGtbWaa0baaSqaaiaais daaeaacaGGQaaaaaGcbaGaeyOaIyRaamiuamaaBaaaleaacaaIYaaa beaaaaGccqGHsisldaWcaaqaaiabgkGi2kaadofadaqhaaWcbaGaaG OnaaqaaiaacQcaaaaakeaacqGHciITcaWGqbWaaSbaaSqaaiaadQga aeqaaaaakiabgUcaRiaad+eadaWgaaWcbaGaaG4naaqabaaaaa@76B6@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  (2.3)

p j = P j + S 4 * Q j 2 S 4 * Q j Q 1 S 4 * P 1 2 S 4 * Q j Q 2 S 4 * P 2 + S 6 * Q j + O 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGQbaabeaakiabg2da9iaadcfadaWgaaWcbaGaamOAaaqabaGc cqGHRaWkdaWcaaqaaiabgkGi2kaadofadaqhaaWcbaGaaGinaaqaai aacQcaaaaakeaacqGHciITcaWGrbWaaSbaaSqaaiaadQgaaeqaaaaa kiabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam 4uamaaDaaaleaacaaI0aaabaGaaiOkaaaaaOqaaiabgkGi2kaadgfa daWgaaWcbaGaamOAaaqabaGccqGHciITcaWGrbWaaSbaaSqaaiaaig daaeqaaaaakmaalaaabaGaeyOaIyRaam4uamaaDaaaleaacaaI0aaa baGaaiOkaaaaaOqaaiabgkGi2kaadcfadaWgaaWcbaGaaGymaaqaba aaaOGaeyOeI0YaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWGtbWaa0baaSqaaiaaisdaaeaacaGGQaaaaaGcbaGaeyOaIyRaam yuamaaBaaaleaacaWGQbaabeaakiabgkGi2kaadgfadaWgaaWcbaGa aGOmaaqabaaaaOWaaSaaaeaacqGHciITcaWGtbWaa0baaSqaaiaais daaeaacaGGQaaaaaGcbaGaeyOaIyRaamiuamaaBaaaleaacaaIYaaa beaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadofadaqhaaWcbaGaaG OnaaqaaiaacQcaaaaakeaacqGHciITcaWGrbWaaSbaaSqaaiaadQga aeqaaaaakiabgUcaRiaad+eadaWgaaWcbaGaaG4naaqabaaaaa@76B8@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  (2.4)

Здесь S 2k * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaIYaGaam4AaaqaaiaacQcaaaaaaa@3AF6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  функции S 2k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaaIYaGaam4Aaaqabaaaaa@3A47@  из (2.2), в которых q 1 , q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaaIXaaabeaakiaacYcacaWGXbWaaSbaaSqaaiaaikdaaeqaaaaa @3C0C@  заменены на Q 1 , Q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaaIXaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaikdaaeqaaaaa @3BCC@ :

S 2k * = S 2k ( Q 1 , Q 2 , P 1 , P 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaIYaGaam4AaaqaaiaacQcaaaGccqGH9aqpcaWGtbWaaSbaaSqa aiaaikdacaWGRbaabeaakiaacIcacaWGrbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaadgfadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiu amaaBaaaleaacaaIXaaabeaakiaacYcacaWGqbWaaSbaaSqaaiaaik daaeqaaOGaaiykaaaa@4945@ , (2.5)

через O n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4tamaaBaaale aacaWGUbaabeaaaaa@398A@  здесь и далее обозначается совокупность членов не ниже n-й степени относительно Q 1 , Q 2 , P 1 , P 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaaIXaaabeaakiaacYcacaWGrbWaaSbaaSqaaiaaikdaaeqaaOGa aiilaiaadcfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiuamaaBa aaleaacaaIYaaabeaaaaa@40B9@ .

Подставив выражения (2.3), (2.4) в функцию Гамильтона (1.8) и подобрав надлежащим образом коэффициенты s ν 1 ν 2 μ 1 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH9oGBdaWgaaadbaGa aGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaWccqaH8oqBda WgaaadbaGaaGOmaaqabaaaleqaaaaa@4365@  форм S 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaaI0aaabeaaaaa@3959@  и S 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaaI2aaabeaaaaa@395B@ , можно упростить (нормализовать) формы четвертой и шестой степеней в новой функции Гамильтона. При этом существенно наличие резонансов k 1 ω 1 = k 2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIXaaabeaakiabg2da 9iaadUgadaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGaaG Omaaqabaaaaa@41D3@ , где ω 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaaaa@3A4B@  и ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaaaa@3A4C@  задаются равенствами (1.6), а k 1 , k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaaIXaaabeaakiaacYcacaWGRbWaaSbaaSqaaiaaikdaaeqaaaaa @3C00@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  натуральные числа, причем k 2 > k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaaIYaaabeaakiabg6da+iaadUgadaWgaaWcbaGaaGymaaqabaaa aa@3C58@ . Число k 1 + k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaaIXaaabeaakiabgUcaRiaadUgadaWgaaWcbaGaaGOmaaqabaaa aa@3C32@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  порядок резонанса.

1. Так как разложение функции Гамильтона в ряд (1.8) не содержит форм нечетных степеней, а сумма показателей ν 1 + μ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyVd42aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaaigdaaeqa aaaa@3DBF@  и ν 2 + μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyVd42aaSbaaS qaaiaaikdaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaaikdaaeqa aaaa@3DC1@  в любом из членов ряда есть четное число, то все резонансы до пятого порядка включительно ( ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@ , ω 1 =3 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaG4maiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECD@ , ω 1 =4 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGinaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECE@ , 2 ω 1 =3 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaiodacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F89@  ) не препятствуют приведению функции (1.8) к нормальной форме вида

H= H (0) ( r 1 , r 2 )+ O 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i aadIeadaahaaWcbeqaaiaacIcacaaIWaGaaiykaaaakiaacIcacaWG YbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaaG OmaaqabaGccaGGPaGaey4kaSIaam4tamaaBaaaleaacaaI2aaabeaa aaa@44FD@ , H (0) = ω 1 r 1 + ω 2 r 2 + c 20 r 1 2 + c 11 r 1 r 2 + c 02 r 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaGaaiikaiaaicdacaGGPaaaaOGaeyypa0JaeqyYdC3aaSbaaSqa aiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIXaaabeaakiabgUcaRi abeM8a3naaBaaaleaacaaIYaaabeaakiaadkhadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdacaaIWaaabeaaki aadkhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaigdacaaIXaaabeaakiaadkhadaWgaaWcbaGaaGymaa qabaGccaWGYbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4yamaa BaaaleaacaaIWaGaaGOmaaqabaGccaWGYbWaa0baaSqaaiaaikdaae aacaaIYaaaaaaa@5958@ , (2.6)

где

Q j = 2 r j sin φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaWGQbaabeaakiabg2da9maakaaabaGaaGOmaiaadkhadaWgaaWc baGaamOAaaqabaaabeaakiGacohacaGGPbGaaiOBaiabeA8aQnaaBa aaleaacaWGQbaabeaaaaa@4330@ , P j = 2 r j cos φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGQbaabeaakiabg2da9maakaaabaGaaGOmaiaadkhadaWgaaWc baGaamOAaaqabaaabeaakiGacogacaGGVbGaai4CaiabeA8aQnaaBa aaleaacaWGQbaabeaaaaa@432A@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  (2.7)

Вычисления по подробно описанному в статье [8] алгоритму нормализации консервативной системы показывают, что форма S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  содержит только 8 одночленов s ν 1 ν 2 μ 1 μ 2 ( ω 1 , ω 2 ) Q 1 ν 1 Q 2 ν 2 P 1 μ 1 P 2 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH9oGBdaWgaaadbaGa aGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaWccqaH8oqBda WgaaadbaGaaGOmaaqabaaaleqaaOGaaiikaiabeM8a3naaBaaaleaa caaIXaaabeaakiaacYcacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcca GGPaGaamyuamaaDaaaleaacaaIXaaabaGaeqyVd42aaSbaaWqaaiaa igdaaeqaaaaakiaadgfadaqhaaWcbaGaaGOmaaqaaiabe27aUnaaBa aameaacaaIYaaabeaaaaGccaWGqbWaa0baaSqaaiaaigdaaeaacqaH 8oqBdaWgaaadbaGaaGymaaqabaaaaOGaamiuamaaDaaaleaacaaIYa aabaGaeqiVd02aaSbaaWqaaiaaikdaaeqaaaaaaaa@5C89@ . При этом, ввиду свойства (1.7) исходной функции Гамильтона, коэффициенты одночленов удовлетворяют такому свойству симметрии:

s ν 1 ν 2 μ 1 μ 2 ( ω 1 , ω 2 ) s ν 2 ν 1 μ 2 μ 1 ( ω 2 , ω 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH9oGBdaWgaaadbaGa aGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaWccqaH8oqBda WgaaadbaGaaGOmaaqabaaaleqaaOGaaiikaiabeM8a3naaBaaaleaa caaIXaaabeaakiaacYcacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcca GGPaGaeyyyIORaam4CamaaBaaaleaacqaH9oGBdaWgaaadbaGaaGOm aaqabaWccqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH8oqBdaWgaa adbaGaaGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaaaleqa aOGaaiikaiabeM8a3naaBaaaleaacaaIYaaabeaakiaacYcacqaHjp WDdaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@601C@  (2.8)

Четыре из коэффициентов формы S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  задаются формулами

s 3010 = 1 64 ω 1 (5+4 ω 1 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacaaIZaGaaGimaiaaigdacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaiAdacaaI0aaaaiabeM8a3naaBaaaleaacaaIXaaabe aakiaacIcacaaI1aGaey4kaSIaaGinaiabeM8a3naaDaaaleaacaaI XaaabaGaaGOmaaaakiaacMcaaaa@48F1@ , s 2101 = ω 1 ( ω 1 2 2 ω 2 2 +4 ω 1 2 ω 2 2 ) 16( ω 1 2 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacaaIYaGaaGymaiaaicdacaaIXaaabeaakiabg2da9maalaaabaGa eqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaaiikaiabeM8a3naaDaaale aacaaIXaaabaGaaGOmaaaakiabgkHiTiaaikdacqaHjpWDdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqyYdC3aa0baaS qaaiaaigdaaeaacaaIYaaaaOGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaIYaaaaOGaaiykaaqaaiaaigdacaaI2aGaaiikaiabeM8a3naaDa aaleaacaaIXaaabaGaaGOmaaaakiabgkHiTiabeM8a3naaDaaaleaa caaIYaaabaGaaGOmaaaakiaacMcaaaaaaa@5CCD@

s 1012 = ω 2 3 (14 ω 1 2 ) 16( ω 1 2 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacaaIXaGaaGimaiaaigdacaaIYaaabeaakiabg2da9iabgkHiTmaa laaabaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIZaaaaOGaaiikai aaigdacqGHsislcaaI0aGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI YaaaaOGaaiykaaqaaiaaigdacaaI2aGaaiikaiabeM8a3naaDaaale aacaaIXaaabaGaaGOmaaaakiabgkHiTiabeM8a3naaDaaaleaacaaI YaaabaGaaGOmaaaakiaacMcaaaaaaa@5323@ , s 1030 = 1 64 ω 1 (34 ω 1 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacaaIXaGaaGimaiaaiodacaaIWaaabeaakiabg2da9maalaaabaGa aGymaaqaaiaaiAdacaaI0aaaaiabeM8a3naaBaaaleaacaaIXaaabe aakiaacIcacaaIZaGaeyOeI0IaaGinaiabeM8a3naaDaaaleaacaaI XaaabaGaaGOmaaaakiaacMcaaaa@48FA@ , (2.9)

а оставшиеся четыре коэффициента s 0301 , s 1210 , s 0121 , s 0103 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacaaIWaGaaG4maiaaicdacaaIXaaabeaakiaacYcacaWGZbWaaSba aSqaaiaaigdacaaIYaGaaGymaiaaicdaaeqaaOGaaiilaiaadohada WgaaWcbaGaaGimaiaaigdacaaIYaGaaGymaaqabaGccaGGSaGaam4C amaaBaaaleaacaaIWaGaaGymaiaaicdacaaIZaaabeaaaaa@4A05@  находятся из (2.8), (2.9).

Коэффициенты c ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaWGPbGaamOAaaqabaaaaa@3A88@  нормальной формы (2.6) определяются следующими равенствами:

c 20 = 1 16 ω 1 2 (34 ω 1 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI XaGaaGOnaaaacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGcca GGOaGaaG4maiabgkHiTiaaisdacqaHjpWDdaqhaaWcbaGaaGymaaqa aiaaikdaaaGccaGGPaaaaa@482E@ , c 11 = 1 4 ω 1 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI 0aaaaiabeM8a3naaBaaaleaacaaIXaaabeaakiabeM8a3naaBaaale aacaaIYaaabeaaaaa@422D@ , c 02 = 1 16 ω 2 2 (34 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI XaGaaGOnaaaacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcca GGOaGaaG4maiabgkHiTiaaisdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaGGPaaaaa@4830@  (2.10)

2. При нормализации функции (1.8) до членов седьмой степени включительно из резонансов шестого и седьмого порядков ( ω 1 =5 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGynaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECF@ , ω 1 =6 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOnaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ED0@ , 2 ω 1 =3 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaiodacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F89@ , 2 ω 1 =4 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaisdacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F8A@ , 2 ω 1 =5 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaiwdacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F8B@ , 3 ω 1 =4 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaG4maiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaisdacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F8B@  ) важен только резонанс 2 ω 1 =4 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIXaaabeaakiabg2da9iaaisdacqaHjpWDdaWgaaWc baGaaGOmaaqabaaaaa@3F8A@ . На самом деле это резонанс третьего порядка ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@ . Но его наличие, как замечено выше, не повлияло на функцию S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  и нормальную форму (2.6).

Если ω 1 2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyiyIKRaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3F8D@ , то нормальная форма функции (1.8) имеет вид

H= ω 1 r 1 + ω 2 r 2 + c 20 r 1 2 + c 11 r 1 r 2 + c 02 r 2 2 + c 30 r 1 3 + c 21 r 1 2 r 2 + c 12 r 1 r 2 2 + c 03 r 2 3 + O 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i abeM8a3naaBaaaleaacaaIXaaabeaakiaadkhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaWGYb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaI YaGaaGimaaqabaGccaWGYbWaa0baaSqaaiaaigdaaeaacaaIYaaaaO Gaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGYbWa aSbaaSqaaiaaigdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaaki abgUcaRiaadogadaWgaaWcbaGaaGimaiaaikdaaeqaaOGaamOCamaa DaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaadogadaWgaaWcba GaaG4maiaaicdaaeqaaOGaamOCamaaDaaaleaacaaIXaaabaGaaG4m aaaakiabgUcaRiaadogadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaam OCamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadkhadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIYaaabe aakiaadkhadaWgaaWcbaGaaGymaaqabaGccaWGYbWaa0baaSqaaiaa ikdaaeaacaaIYaaaaOGaey4kaSIaam4yamaaBaaaleaacaaIWaGaaG 4maaqabaGccaWGYbWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaey4k aSIaam4tamaaBaaaleaacaaI4aaabeaaaaa@7601@  (2.11)

Коэффициенты c 20 , c 11 , c 02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGimaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIXaGa aGymaaqabaGccaGGSaGaam4yamaaBaaaleaacaaIWaGaaGOmaaqaba aaaa@40A9@  задаются формулами (2.10), а

c 30 = 1 256 ω 1 3 (48 ω 1 4 72 ω 1 2 +23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIZaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaGaaGynaiaaiAdaaaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIZa aaaOGaaiikaiaaisdacaaI4aGaeqyYdC3aa0baaSqaaiaaigdaaeaa caaI0aaaaOGaeyOeI0IaaG4naiaaikdacqaHjpWDdaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaaG4maiaacMcaaaa@504A@ , c 21 = ω 1 2 ω 2 (16 ω 1 4 ω 2 2 +8 ω 1 2 ω 2 2 16 ω 1 4 +10 ω 1 2 9 ω 2 2 ) 64( ω 1 2 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabeM8a3naaDaaa leaacaaIXaaabaGaaGOmaaaakiabeM8a3naaBaaaleaacaaIYaaabe aakiaacIcacaaIXaGaaGOnaiabeM8a3naaDaaaleaacaaIXaaabaGa aGinaaaakiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiabgU caRiaaiIdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqaH jpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHsislcaaIXaGaaG OnaiabeM8a3naaDaaaleaacaaIXaaabaGaaGinaaaakiabgUcaRiaa igdacaaIWaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey OeI0IaaGyoaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiaa cMcaaeaacaaI2aGaaGinaiaacIcacqaHjpWDdaqhaaWcbaGaaGymaa qaaiaaikdaaaGccqGHsislcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccaGGPaaaaaaa@6F82@

c 12 = ω 1 ω 2 2 (16 ω 1 2 ω 2 4 +8 ω 1 2 ω 2 2 16 ω 2 4 +10 ω 2 2 9 ω 1 2 ) 64( ω 2 2 ω 1 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabeM8a3naaBaaa leaacaaIXaaabeaakiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaa aakiaacIcacaaIXaGaaGOnaiabeM8a3naaDaaaleaacaaIXaaabaGa aGOmaaaakiabeM8a3naaDaaaleaacaaIYaaabaGaaGinaaaakiabgU caRiaaiIdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqaH jpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHsislcaaIXaGaaG OnaiabeM8a3naaDaaaleaacaaIYaaabaGaaGinaaaakiabgUcaRiaa igdacaaIWaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey OeI0IaaGyoaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiaa cMcaaeaacaaI2aGaaGinaiaacIcacqaHjpWDdaqhaaWcbaGaaGOmaa qaaiaaikdaaaGccqGHsislcqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGccaGGPaaaaaaa@6F83@ , c 03 = 1 256 ω 2 3 (48 ω 2 4 72 ω 2 2 +23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaGaaGynaiaaiAdaaaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIZa aaaOGaaiikaiaaisdacaaI4aGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaI0aaaaOGaeyOeI0IaaG4naiaaikdacqaHjpWDdaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaaG4maiaacMcaaaa@504D@ (2.12)

При этом форма S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  определяется, как и выше, равенствами (2.8) и (2.9), а форма S 6 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI2aaabaGaaiOkaaaaaaa@3A0A@  содержит 20 одночленов и представима в виде

S 6 * =   R 6 24576 ( ω 1 2 ω 2 2 ) 2 ( ω 1 2 4 ω 2 2 ) 2 (4 ω 1 2 ω 2 2 ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI2aaabaGaaiOkaaaakiabg2da9maalaaabaGaaeiiaiaadkfa daWgaaWcbaGaaGOnaaqabaaakeaacaaIYaGaaGinaiaaiwdacaaI3a GaaGOnaiaacIcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHsislcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPa WaaWbaaSqabeaacaaIYaaaaOGaaiikaiabeM8a3naaDaaaleaacaaI XaaabaGaaGOmaaaakiabgkHiTiaaisdacqaHjpWDdaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiik aiaaisdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHsi slcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaWaaWba aSqabeaacaaIYaaaaaaaaaa@6156@ , (2.13)

где

R 6 = ν 1 + ν 2 + μ 1 + μ 2 =6 r ν 1 ν 2 μ 1 μ 2 ( ω 1 , ω 2 ) Q 1 ν 1 Q 2 ν 2 P 1 μ 1 P 2 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaI2aaabeaakiabg2da9maaqafabaGaamOCamaaBaaaleaacqaH 9oGBdaWgaaadbaGaaGymaaqabaWccqaH9oGBdaWgaaadbaGaaGOmaa qabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaWccqaH8oqBdaWgaaad baGaaGOmaaqabaaaleqaaOGaaiikaiabeM8a3naaBaaaleaacaaIXa aabeaakiaacYcacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaGGPaGa amyuamaaDaaaleaacaaIXaaabaGaeqyVd42aaSbaaWqaaiaaigdaae qaaaaakiaadgfadaqhaaWcbaGaaGOmaaqaaiabe27aUnaaBaaameaa caaIYaaabeaaaaGccaWGqbWaa0baaSqaaiaaigdaaeaacqaH8oqBda WgaaadbaGaaGymaaqabaaaaaWcbaGaeqyVd42aaSbaaWqaaiaaigda aeqaaSGaey4kaSIaeqyVd42aaSbaaWqaaiaaikdaaeqaaSGaey4kaS IaeqiVd02aaSbaaWqaaiaaigdaaeqaaSGaey4kaSIaeqiVd02aaSba aWqaaiaaikdaaeqaaSGaeyypa0JaaGOnaaqab0GaeyyeIuoakiaadc fadaqhaaWcbaGaaGOmaaqaaiabeY7aTnaaBaaameaacaaIYaaabeaa aaaaaa@7094@ , r ν 1 ν 2 μ 1 μ 2 ( ω 1 , ω 2 ) r ν 2 ν 1 μ 2 μ 1 ( ω 2 , ω 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH9oGBdaWgaaadbaGa aGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaWccqaH8oqBda WgaaadbaGaaGOmaaqabaaaleqaaOGaaiikaiabeM8a3naaBaaaleaa caaIXaaabeaakiaacYcacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcca GGPaGaeyyyIORaamOCamaaBaaaleaacqaH9oGBdaWgaaadbaGaaGOm aaqabaWccqaH9oGBdaWgaaadbaGaaGymaaqabaWccqaH8oqBdaWgaa adbaGaaGOmaaqabaWccqaH8oqBdaWgaaadbaGaaGymaaqabaaaleqa aOGaaiikaiabeM8a3naaBaaaleaacaaIYaaabeaakiaacYcacqaHjp WDdaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@601A@          (2.14)

Выпишем выражения для 10-ти из коэффициентов формы R 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaI2aaabeaaaaa@395A@  (остальные 10 находятся при помощи второго из соотношений (2.14)):

r 5010 =3 ω 1 2 1100 ω 2 8 +(6875+1248 ω 2 2 ) ω 2 6 ω 1 2 +10(1155780 ω 2 2 32 ω 2 4 ) ω 2 4 ω 1 4 + +(6875+13104 ω 2 2 +2000 ω 2 4 ) ω 2 2 ω 1 6 +20 55390 ω 2 2 168 ω 2 4 ω 1 8 + +16(78+125 ω 2 2 ) ω 1 10 320 ω 1 12 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaiwdacaaIWaGaaGymaiaaicdaaeqaaOGaeyypa0JaaG4m aiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakmaadeaabaGaaG ymaiaaigdacaaIWaGaaGimaiabeM8a3naaDaaaleaacaaIYaaabaGa aGioaaaakiabgUcaRiaacIcacqGHsislcaaI2aGaaGioaiaaiEdaca aI1aGaey4kaSIaaGymaiaaikdacaaI0aGaaGioaiabeM8a3naaDaaa leaacaaIYaaabaGaaGOmaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaG OmaaqaaiaaiAdaaaGccqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcaaIXaGaaGimaiaacIcacaaIXaGaaGymaiaaiwdaca aI1aGaeyOeI0IaaG4naiaaiIdacaaIWaGaeqyYdC3aa0baaSqaaiaa ikdaaeaacaaIYaaaaOGaeyOeI0IaaG4maiaaikdacqaHjpWDdaqhaa WcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaaiaa ikdaaeaacaaI0aaaaOGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI0a aaaaGccaGLBbaacqGHRaWkaeaacqGHRaWkcaGGOaGaeyOeI0IaaGOn aiaaiIdacaaI3aGaaGynaiabgUcaRiaaigdacaaIZaGaaGymaiaaic dacaaI0aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaaicdacaaIWaGaaGimaiabeM8a3naaDaaaleaacaaIYa aabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaiAdaaaGccqGHRa WkcaaIYaGaaGimamaabmaabaGaaGynaiaaiwdacqGHsislcaaIZaGa aGyoaiaaicdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccq GHsislcaaIXaGaaGOnaiaaiIdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaisdaaaaakiaawIcacaGLPaaacqaHjpWDdaqhaaWcbaGaaGymaa qaaiaaiIdaaaGccqGHRaWkaeaacqGHRaWkcaaIXaGaaGOnaiaacIca caaI3aGaaGioaiabgUcaRiaaigdacaaIYaGaaGynaiabeM8a3naaDa aaleaacaaIYaaabaGaaGOmaaaakiaacMcacqaHjpWDdaqhaaWcbaGa aGymaaqaaiaaigdacaaIWaaaaOGaeyOeI0IaaG4maiaaikdacaaIWa GaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIXaGaaGOmaaaakiaac2fa aaaa@C3A4@

r 4101 =48 ω 1 2 [144 ω 2 8 36(21+16 ω 2 2 ) ω 2 6 ω 1 2 +40(23+62 ω 2 2 +8 ω 2 4 ) ω 2 4 ω 1 4 (409+2056 ω 2 2 +1360 ω 2 4 ) ω 2 2 ω 1 6 +8(7+70 ω 2 2 +40 ω 2 4 ) ω 1 8 48 ω 1 10 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaisdacaaIXaGaaGimaiaaigdaaeqaaOGaeyypa0JaaGin aiaaiIdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGBb GaaGymaiaaisdacaaI0aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI 4aaaaOGaeyOeI0IaaG4maiaaiAdacaGGOaGaaGOmaiaaigdacqGHRa WkcaaIXaGaaGOnaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaa kiaacMcacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiAdaaaGccqaHjp WDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaaI0aGaaGim aiaacIcacaaIYaGaaG4maiabgUcaRiaaiAdacaaIYaGaeqyYdC3aa0 baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGioaiabeM8a3naa DaaaleaacaaIYaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcba GaaGOmaaqaaiaaisdaaaGccqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa isdaaaGccqGHsislaeaacqGHsislcaGGOaGaaGinaiaaicdacaaI5a Gaey4kaSIaaGOmaiaaicdacaaI1aGaaGOnaiabeM8a3naaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaigdacaaIZaGaaGOnaiaaic dacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyY dC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeqyYdC3aa0baaSqaai aaigdaaeaacaaI2aaaaOGaey4kaSIaaGioaiaacIcacaaI3aGaey4k aSIaaG4naiaaicdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaa GccqGHRaWkcaaI0aGaaGimaiabeM8a3naaDaaaleaacaaIYaaabaGa aGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaiIdaaa GccqGHsislcaaI0aGaaGioaiabeM8a3naaDaaaleaacaaIXaaabaGa aGymaiaaicdaaaGccaGGDbaaaaa@A706@

r 3210 =24 ω 1 [204 ω 2 9 + ω 2 7 (1551+1216 ω 2 2 ) ω 1 2 + ω 2 5 (32555424 ω 2 2 448 ω 2 4 ) ω 1 4 + +144 ω 2 3 (15+36 ω 2 2 +11 ω 2 4 ) ω 1 6 +8 ω 2 (45266 ω 2 2 +114 ω 2 4 ) ω 1 8 32 ω 2 (9+10 ω 2 2 ) ω 1 10 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaiodacaaIYaGaaGymaiaaicdaaeqaaOGaeyypa0JaaGOm aiaaisdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccaGGBbGaaGOmai aaicdacaaI0aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI5aaaaOGa ey4kaSIaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI3aaaaOGaaiikai abgkHiTiaaigdacaaI1aGaaGynaiaaigdacqGHRaWkcaaIXaGaaGOm aiaaigdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaO GaaiykaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUca RiabeM8a3naaDaaaleaacaaIYaaabaGaaGynaaaakiaacIcacaaIZa GaaGOmaiaaiwdacaaI1aGaeyOeI0IaaGynaiaaisdacaaIYaGaaGin aiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiaais dacaaI0aGaaGioaiabeM8a3naaDaaaleaacaaIYaaabaGaaGinaaaa kiaacMcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqGHRa WkaeaacqGHRaWkcaaIXaGaaGinaiaaisdacqaHjpWDdaqhaaWcbaGa aGOmaaqaaiaaiodaaaGccaGGOaGaeyOeI0IaaGymaiaaiwdacqGHRa WkcaaIZaGaaGOnaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaa kiabgUcaRiaaigdacaaIXaGaeqyYdC3aa0baaSqaaiaaikdaaeaaca aI0aaaaOGaaiykaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOnaaaa kiabgUcaRiaaiIdacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaGGOa GaaGinaiaaiwdacqGHsislcaaIYaGaaGOnaiaaiAdacqaHjpWDdaqh aaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGymaiaais dacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyY dC3aa0baaSqaaiaaigdaaeaacaaI4aaaaOGaeyOeI0cabaGaeyOeI0 IaaG4maiaaikdacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaGGOaGa eyOeI0IaaGyoaiabgUcaRiaaigdacaaIWaGaeqyYdC3aa0baaSqaai aaikdaaeaacaaIYaaaaOGaaiykaiabeM8a3naaDaaaleaacaaIXaaa baGaaGymaiaaicdaaaGccaGGDbaaaaa@BC8E@

r 3030 =2 ω 1 2 [1796 ω 2 8 ω 2 6 (11225+5088 ω 2 2 ) ω 1 2 +2 ω 2 4 (9429+15900 ω 2 2 +1568 ω 2 4 ) ω 1 4 ω 2 2 (11225+53424 ω 2 2 +19600 ω 2 4 ) ω 1 6 +4(449+7950 ω 2 2 +8232 ω 2 4 ) ω 1 8 16(318+1225 ω 2 2 ) ω 1 10 +3136 ω 1 12 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaqabeaacaWGYbWaaS baaSqaaiaaiodacaaIWaGaaG4maiaaicdaaeqaaOGaeyypa0JaaGOm aiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiaacUfacaaIXa GaaG4naiaaiMdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI 4aaaaOGaeyOeI0IaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI2aaaaO GaaiikaiaaigdacaaIXaGaaGOmaiaaikdacaaI1aGaey4kaSIaaGyn aiaaicdacaaI4aGaaGioaiabeM8a3naaDaaaleaacaaIYaaabaGaaG OmaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI0aaaaO GaaiikaiaaiMdacaaI0aGaaGOmaiaaiMdacqGHRaWkcaaIXaGaaGyn aiaaiMdacaaIWaGaaGimaiabeM8a3naaDaaaleaacaaIYaaabaGaaG OmaaaakiabgUcaRiaaigdacaaI1aGaaGOnaiaaiIdacqaHjpWDdaqh aaWcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaai aaigdaaeaacaaI0aaaaOGaeyOeI0cabaGaeyOeI0IaeqyYdC3aa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaaiikaiaaigdacaaIXaGaaGOmai aaikdacaaI1aGaey4kaSIaaGynaiaaiodacaaI0aGaaGOmaiaaisda cqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIXa GaaGyoaiaaiAdacaaIWaGaaGimaiabeM8a3naaDaaaleaacaaIYaaa baGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaiA daaaGccqGHRaWkcaaI0aGaaiikaiaaisdacaaI0aGaaGyoaiabgUca RiaaiEdacaaI5aGaaGynaiaaicdacqaHjpWDdaqhaaWcbaGaaGOmaa qaaiaaikdaaaGccqGHRaWkcaaI4aGaaGOmaiaaiodacaaIYaGaeqyY dC3aa0baaSqaaiaaikdaaeaacaaI0aaaaOGaaiykaiabeM8a3naaDa aaleaacaaIXaaabaGaaGioaaaakiabgkHiTaqaaiabgkHiTiaaigda caaI2aGaaiikaiaaiodacaaIXaGaaGioaiabgUcaRiaaigdacaaIYa GaaGOmaiaaiwdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc caGGPaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIXaGaaGimaaaaki abgUcaRiaaiodacaaIXaGaaG4maiaaiAdacqaHjpWDdaqhaaWcbaGa aGymaaqaaiaaigdacaaIYaaaaOGaaiyxaaaaaa@C9C1@

r 3012 =24 ω 1 ω 2 3 [2 ω 1 6 (37+164 ω 1 2 +32 ω 1 4 )+9 ω 1 4 (49240 ω 1 2 +48 ω 1 4 ) ω 2 2 3 ω 1 2 (2051208 ω 1 2 +976 ω 1 4 ) ω 2 4 +4(35232 ω 1 2 +176 ω 1 4 ) ω 2 6 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaiodacaaIWaGaaGymaiaaikdaaeqaaOGaeyypa0JaaGOm aiaaisdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHjpWDdaqhaa WcbaGaaGOmaaqaaiaaiodaaaGccaGGBbGaaGOmaiabeM8a3naaDaaa leaacaaIXaaabaGaaGOnaaaakiaacIcacqGHsislcaaIZaGaaG4nai abgUcaRiaaigdacaaI2aGaaGinaiabeM8a3naaDaaaleaacaaIXaaa baGaaGOmaaaakiabgUcaRiaaiodacaaIYaGaeqyYdC3aa0baaSqaai aaigdaaeaacaaI0aaaaOGaaiykaiabgUcaRiaaiMdacqaHjpWDdaqh aaWcbaGaaGymaaqaaiaaisdaaaGccaGGOaGaaGinaiaaiMdacqGHsi slcaaIYaGaaGinaiaaicdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGccqGHRaWkcaaI0aGaaGioaiabeM8a3naaDaaaleaacaaIXa aabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccqGHsislaeaacqGHsislcaaIZaGaeqyYdC3aa0baaSqaai aaigdaaeaacaaIYaaaaOGaaiikaiaaikdacaaIWaGaaGynaiabgkHi TiaaigdacaaIYaGaaGimaiaaiIdacqaHjpWDdaqhaaWcbaGaaGymaa qaaiaaikdaaaGccqGHRaWkcaaI5aGaaG4naiaaiAdacqaHjpWDdaqh aaWcbaGaaGymaaqaaiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaai aaikdaaeaacaaI0aaaaOGaey4kaSIaaGinaiaacIcacaaIZaGaaGyn aiabgkHiTiaaikdacaaIZaGaaGOmaiabeM8a3naaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiaaigdacaaI3aGaaGOnaiabeM8a3naa DaaaleaacaaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcba GaaGOmaaqaaiaaiAdaaaGccaGGDbaaaaa@A2E0@

r 2103 =24 ω 1 ω 2 [60 ω 1 8 + ω 1 6 (427+128 ω 1 2 ) ω 2 2 ω 1 4 (1175+1184 ω 1 2 +448 ω 1 4 ) ω 2 4 + +4 ω 1 2 (235+8 ω 1 2 +524 ω 1 4 ) ω 2 6 +8(21+120 ω 1 2 158 ω 1 4 ) ω 2 8 +32(7+6 ω 1 2 ) ω 2 10 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaqabeaacaWGYbWaaS baaSqaaiaaikdacaaIXaGaaGimaiaaiodaaeqaaOGaeyypa0JaaGOm aiaaisdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHjpWDdaWgaa WcbaGaaGOmaaqabaGccaGGBbGaaGOnaiaaicdacqaHjpWDdaqhaaWc baGaaGymaaqaaiaaiIdaaaGccqGHRaWkcqaHjpWDdaqhaaWcbaGaaG ymaaqaaiaaiAdaaaGccaGGOaGaeyOeI0IaaGinaiaaikdacaaI3aGa ey4kaSIaaGymaiaaikdacaaI4aGaeqyYdC3aa0baaSqaaiaaigdaae aacaaIYaaaaOGaaiykaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOm aaaakiabgkHiTiabeM8a3naaDaaaleaacaaIXaaabaGaaGinaaaaki aacIcacqGHsislcaaIXaGaaGymaiaaiEdacaaI1aGaey4kaSIaaGym aiaaigdacaaI4aGaaGinaiabeM8a3naaDaaaleaacaaIXaaabaGaaG OmaaaakiabgUcaRiaaisdacaaI0aGaaGioaiabeM8a3naaDaaaleaa caaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOmaa qaaiaaisdaaaGccqGHRaWkaeaacqGHRaWkcaaI0aGaeqyYdC3aa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaaiikaiabgkHiTiaaikdacaaIZa GaaGynaiabgUcaRiaaiIdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGccqGHRaWkcaaI1aGaaGOmaiaaisdacqaHjpWDdaqhaaWcba GaaGymaaqaaiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaaiaaikda aeaacaaI2aaaaOGaey4kaSIaaGioaiaacIcacaaIYaGaaGymaiabgU caRiaaigdacaaIYaGaaGimaiabeM8a3naaDaaaleaacaaIXaaabaGa aGOmaaaakiabgkHiTiaaigdacaaI1aGaaGioaiabeM8a3naaDaaale aacaaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOm aaqaaiaaiIdaaaGccqGHRaWkcaaIZaGaaGOmaiaacIcacqGHsislca aI3aGaey4kaSIaaGOnaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOm aaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaigdacaaIWa aaaOGaaiyxaaaaaa@B609@

r 2121 =48[16 ω 2 10 4 ω 2 8 (17+32 ω 2 2 ) ω 1 2 +4 ω 2 6 (87+404 ω 2 2 +64 ω 2 4 ) ω 1 4 ω 2 4 (1007+2668 ω 2 2 +2048 ω 2 4 ) ω 1 6 + ω 2 2 (661+104 ω 2 2 +4656 ω 2 4 ) ω 1 8 + +4(27+205 ω 2 2 580 ω 2 4 ) ω 1 10 +16(11+20 ω 2 2 ) ω 1 12 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaikdacaaIXaGaaGOmaiaaigdaaeqaaOGaeyypa0JaaGin aiaaiIdacaGGBbGaaGymaiaaiAdacqaHjpWDdaqhaaWcbaGaaGOmaa qaaiaaigdacaaIWaaaaOGaeyOeI0IaaGinaiabeM8a3naaDaaaleaa caaIYaaabaGaaGioaaaakiaacIcacaaIXaGaaG4naiabgUcaRiaaio dacaaIYaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaiyk aiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaais dacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiAdaaaGccaGGOaGaeyOe I0IaaGioaiaaiEdacqGHRaWkcaaI0aGaaGimaiaaisdacqaHjpWDda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaI2aGaaGinaiab eM8a3naaDaaaleaacaaIYaaabaGaaGinaaaakiaacMcacqaHjpWDda qhaaWcbaGaaGymaaqaaiaaisdaaaGccqGHsislaeaacqGHsislcqaH jpWDdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaGGOaGaeyOeI0IaaG ymaiaaicdacaaIWaGaaG4naiabgUcaRiaaikdacaaI2aGaaGOnaiaa iIdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkca aIYaGaaGimaiaaisdacaaI4aGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaI0aaaaOGaaiykaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOnaa aakiabgUcaRiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiaa cIcacqGHsislcaaI2aGaaGOnaiaaigdacqGHRaWkcaaIXaGaaGimai aaisdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWk caaI0aGaaGOnaiaaiwdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaae aacaaI0aaaaOGaaiykaiabeM8a3naaDaaaleaacaaIXaaabaGaaGio aaaakiabgUcaRaqaaiabgUcaRiaaisdacaGGOaGaaGOmaiaaiEdacq GHRaWkcaaIYaGaaGimaiaaiwdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccqGHsislcaaI1aGaaGioaiaaicdacqaHjpWDdaqhaa WcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaaiaa igdaaeaacaaIXaGaaGimaaaakiabgUcaRiaaigdacaaI2aGaaiikai abgkHiTiaaigdacaaIXaGaey4kaSIaaGOmaiaaicdacqaHjpWDdaqh aaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPaGaeqyYdC3aa0baaSqaai aaigdaaeaacaaIXaGaaGOmaaaakiaac2faaaaa@CDD4@

r 1014 =48 ω 2 4 [12(1+4 ω 1 2 ) ω 1 6 ω 1 4 (195+524 ω 1 2 +256 ω 1 4 ) ω 2 2 + +48 ω 1 2 (4+ ω 1 2 +24 ω 1 4 ) ω 2 4 +12(3+23 ω 1 2 44 ω 1 4 ) ω 2 6 +64(1+ ω 1 2 ) ω 2 8 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaigdacaaIWaGaaGymaiaaisdaaeqaaOGaeyypa0JaaGin aiaaiIdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaGGBb GaaGymaiaaikdacaGGOaGaeyOeI0IaaGymaiabgUcaRiaaisdacqaH jpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGPaGaeqyYdC3aa0 baaSqaaiaaigdaaeaacaaI2aaaaOGaeyOeI0IaeqyYdC3aa0baaSqa aiaaigdaaeaacaaI0aaaaOGaaiikaiabgkHiTiaaigdacaaI5aGaaG ynaiabgUcaRiaaiwdacaaIYaGaaGinaiabeM8a3naaDaaaleaacaaI XaaabaGaaGOmaaaakiabgUcaRiaaikdacaaI1aGaaGOnaiabeM8a3n aaDaaaleaacaaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHRaWkaeaacqGHRaWkcaaI0aGaaG ioaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiaacIcacqGH sislcaaI0aGaey4kaSIaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaaGOmaiaaisdacqaHjpWDdaqhaaWcbaGaaGymaaqa aiaaisdaaaGccaGGPaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI0a aaaOGaey4kaSIaaGymaiaaikdacaGGOaGaaG4maiabgUcaRiaaikda caaIZaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaeyOeI0 IaaGinaiaaisdacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaisdaaaGc caGGPaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI2aaaaOGaey4kaS IaaGOnaiaaisdacaGGOaGaeyOeI0IaaGymaiabgUcaRiabeM8a3naa DaaaleaacaaIXaaabaGaaGOmaaaakiaacMcacqaHjpWDdaqhaaWcba GaaGOmaaqaaiaaiIdaaaGccaGGDbaaaaa@A28D@

r 1050 =3 ω 1 2 [332 ω 2 8 ω 2 6 (2075+1056 ω 2 2 ) ω 1 2 +2 ω 2 4 (1743+3300 ω 2 2 +352 ω 2 4 ) ω 1 4 ω 2 2 (2075+11088 ω 2 2 +4400 ω 2 4 ) ω 1 6 +4(83+1650 ω 2 2 +1848 ω 2 4 ) ω 1 8 16(66+275 ω 2 2 ) ω 1 10 +704 ω 1 12 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaigdacaaIWaGaaGynaiaaicdaaeqaaOGaeyypa0JaaG4m aiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaaaakiaacUfacaaIZa GaaG4maiaaikdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiIdaaaGc cqGHsislcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiAdaaaGccaGGOa GaaGOmaiaaicdacaaI3aGaaGynaiabgUcaRiaaigdacaaIWaGaaGyn aiaaiAdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPa GaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaaGOm aiabeM8a3naaDaaaleaacaaIYaaabaGaaGinaaaakiaacIcacaaIXa GaaG4naiaaisdacaaIZaGaey4kaSIaaG4maiaaiodacaaIWaGaaGim aiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaio dacaaI1aGaaGOmaiabeM8a3naaDaaaleaacaaIYaaabaGaaGinaaaa kiaacMcacqaHjpWDdaqhaaWcbaGaaGymaaqaaiaaisdaaaGccqGHsi slaeaacqGHsislcqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc caGGOaGaaGOmaiaaicdacaaI3aGaaGynaiabgUcaRiaaigdacaaIXa GaaGimaiaaiIdacaaI4aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaI YaaaaOGaey4kaSIaaGinaiaaisdacaaIWaGaaGimaiabeM8a3naaDa aaleaacaaIYaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGa aGymaaqaaiaaiAdaaaGccqGHRaWkcaaI0aGaaiikaiaaiIdacaaIZa Gaey4kaSIaaGymaiaaiAdacaaI1aGaaGimaiabeM8a3naaDaaaleaa caaIYaaabaGaaGOmaaaakiabgUcaRiaaigdacaaI4aGaaGinaiaaiI dacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaGGPaGaeqyY dC3aa0baaSqaaiaaigdaaeaacaaI4aaaaOGaeyOeI0cabaGaeyOeI0 IaaGymaiaaiAdacaGGOaGaaGOnaiaaiAdacqGHRaWkcaaIYaGaaG4n aiaaiwdacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGPa GaeqyYdC3aa0baaSqaaiaaigdaaeaacaaIXaGaaGimaaaakiabgUca RiaaiEdacaaIWaGaaGinaiabeM8a3naaDaaaleaacaaIXaaabaGaaG ymaiaaikdaaaGccaGGDbaaaaa@C244@

r 1032 =24 ω 1 ω 2 3 [2 ω 1 6 (31+92 ω 1 2 +32 ω 1 4 ) ω 1 4 (337+1040 ω 1 2 +80 ω 1 4 ) ω 2 2 ω 1 2 (3711240 ω 1 2 +752 ω 1 4 ) ω 2 4 +12(58 ω 1 2 +16 ω 1 4 ) ω 2 6 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGYbWaaS baaSqaaiaaigdacaaIWaGaaG4maiaaikdaaeqaaOGaeyypa0JaaGOm aiaaisdacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHjpWDdaqhaa WcbaGaaGOmaaqaaiaaiodaaaGccaGGBbGaaGOmaiabeM8a3naaDaaa leaacaaIXaaabaGaaGOnaaaakiaacIcacqGHsislcaaIZaGaaGymai abgUcaRiaaiMdacaaIYaGaeqyYdC3aa0baaSqaaiaaigdaaeaacaaI YaaaaOGaey4kaSIaaG4maiaaikdacqaHjpWDdaqhaaWcbaGaaGymaa qaaiaaisdaaaGccaGGPaGaeyOeI0IaeqyYdC3aa0baaSqaaiaaigda aeaacaaI0aaaaOGaaiikaiabgkHiTiaaiodacaaIZaGaaG4naiabgU caRiaaigdacaaIWaGaaGinaiaaicdacqaHjpWDdaqhaaWcbaGaaGym aaqaaiaaikdaaaGccqGHRaWkcaaI4aGaaGimaiabeM8a3naaDaaale aacaaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccqGHsislaeaacqGHsislcqaHjpWDdaqhaaWcba GaaGymaaqaaiaaikdaaaGccaGGOaGaaG4maiaaiEdacaaIXaGaeyOe I0IaaGymaiaaikdacaaI0aGaaGimaiabeM8a3naaDaaaleaacaaIXa aabaGaaGOmaaaakiabgUcaRiaaiEdacaaI1aGaaGOmaiabeM8a3naa DaaaleaacaaIXaaabaGaaGinaaaakiaacMcacqaHjpWDdaqhaaWcba GaaGOmaaqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGOmaiaacIcacaaI 1aGaeyOeI0IaaGioaiabeM8a3naaDaaaleaacaaIXaaabaGaaGOmaa aakiabgUcaRiaaigdacaaI2aGaeqyYdC3aa0baaSqaaiaaigdaaeaa caaI0aaaaOGaaiykaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOnaa aakiaac2faaaaa@A0BC@  (2.15)

3. При резонансе ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@  к нормальной форме (2.11) добавится слагаемое (резонансный член) вида α 12 r 1 r 2 2 cos(2 φ 1 4 φ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqySde2aaSbaaS qaaiaaigdacaaIYaaabeaakiaadkhadaWgaaWcbaGaaGymaaqabaGc caWGYbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaci4yaiaac+gaca GGZbGaaiikaiaaikdacqaHgpGAdaWgaaWcbaGaaGymaaqabaGccqGH sislcaaI0aGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@4B61@ . При этом, как показывают несложные вычисления, коэффициенты нормальной формы будут такими:

c 20 = 1 4 ω 2 2 (316 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI 0aaaaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiaacIcaca aIZaGaeyOeI0IaaGymaiaaiAdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaGGPaaaaa@4830@ , c 11 = 1 2 ω 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaaaaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaaaaa@402A@ , c 02 = 1 16 ω 2 2 (34 ω 2 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI XaGaaGOnaaaacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcca GGOaGaaG4maiabgkHiTiaaisdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaGGPaaaaa@4830@  (2.16)

c 30 = 1 32 ω 2 3 (768 ω 2 4 288 ω 2 2 +23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIZaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI ZaGaaGOmaaaacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiodaaaGcca GGOaGaaG4naiaaiAdacaaI4aGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaI0aaaaOGaeyOeI0IaaGOmaiaaiIdacaaI4aGaeqyYdC3aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGOmaiaaiodacaGGPaaa aa@5111@ , c 21 = 1 48 ω 2 3 (256 ω 2 4 224 ω 2 2 +31) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI 0aGaaGioaaaacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaiodaaaGcca GGOaGaaGOmaiaaiwdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaI0aaaaOGaeyOeI0IaaGOmaiaaikdacaaI0aGaeqyYdC3aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaG4maiaaigdacaGGPaaa aa@5105@

c 12 = 1 48 ω 2 3 (32 ω 2 4 +8 ω 2 2 13) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGOmaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaigda aeaacaaI0aGaaGioaaaacqaHjpWDdaqhaaWcbaGaaGOmaaqaaiaaio daaaGccaGGOaGaaG4maiaaikdacqaHjpWDdaqhaaWcbaGaaGOmaaqa aiaaisdaaaGccqGHRaWkcaaI4aGaeqyYdC3aa0baaSqaaiaaikdaae aacaaIYaaaaOGaeyOeI0IaaGymaiaaiodacaGGPaaaaa@4FBC@ , c 03 = 1 256 ω 2 3 (48 ω 2 4 72 ω 2 2 +23) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaGaaGynaiaaiAdaaaGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIZa aaaOGaaiikaiaaisdacaaI4aGaeqyYdC3aa0baaSqaaiaaikdaaeaa caaI0aaaaOGaeyOeI0IaaG4naiaaikdacqaHjpWDdaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaaG4maiaacMcaaaa@504D@  (2.17)

α 12 = 3 64 ω 2 3 (12 ω 2 2 1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqySde2aaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9maalaaabaGaaG4maaqaaiaa iAdacaaI0aaaaiabeM8a3naaDaaaleaacaaIYaaabaGaaG4maaaaki aacIcacaaIXaGaaGOmaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOm aaaakiabgkHiTiaaigdacaGGPaaaaa@49A5@  (2.18)

Функции S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  и S 6 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI2aaabaGaaiOkaaaaaaa@3A0A@  в нормализующей замене переменных (2.3), (2.4) имеют следующий вид:

S 4 * = 1 32 ω 2 (16 ω 2 2 +5) Q 1 3 P 1 1 48 ω 2 (16 ω 2 2 7) Q 1 Q 2 2 P 1 1 32 ω 2 (16 ω 2 2 3) P 1 3 Q 1 + + 1 48 ω 2 (16 ω 2 2 1) P 2 2 Q 1 P 1 1 6 ω 2 (4 ω 2 2 1) P 1 2 P 2 Q 2 + 1 12 ω 2 (8 ω 2 2 +1) Q 1 2 Q 2 P 2 + + 1 64 ω 2 (4 ω 2 2 +5) Q 2 3 P 2 1 64 ω 2 (4 ω 2 2 3) Q 2 P 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGtbWaa0 baaSqaaiaaisdaaeaacaGGQaaaaOGaeyypa0ZaaSaaaeaacaaIXaaa baGaaG4maiaaikdaaaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaai ikaiaaigdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaa aOGaey4kaSIaaGynaiaacMcacaWGrbWaa0baaSqaaiaaigdaaeaaca aIZaaaaOGaamiuamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaa baGaaGymaaqaaiaaisdacaaI4aaaaiabeM8a3naaBaaaleaacaaIYa aabeaakiaacIcacaaIXaGaaGOnaiabeM8a3naaDaaaleaacaaIYaaa baGaaGOmaaaakiabgkHiTiaaiEdacaGGPaGaamyuamaaBaaaleaaca aIXaaabeaakiaadgfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWG qbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaaba GaaG4maiaaikdaaaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaaiik aiaaigdacaaI2aGaeqyYdC3aa0baaSqaaiaaikdaaeaacaaIYaaaaO GaeyOeI0IaaG4maiaacMcacaWGqbWaa0baaSqaaiaaigdaaeaacaaI ZaaaaOGaamyuamaaBaaaleaacaaIXaaabeaakiabgUcaRaqaaiabgU caRmaalaaabaGaaGymaaqaaiaaisdacaaI4aaaaiabeM8a3naaBaaa leaacaaIYaaabeaakiaacIcacaaIXaGaaGOnaiabeM8a3naaDaaale aacaaIYaaabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaGaamiuamaa DaaaleaacaaIYaaabaGaaGOmaaaakiaadgfadaWgaaWcbaGaaGymaa qabaGccaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaaabaGaaGOnaaaacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGcca GGOaGaaGinaiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaaaakiab gkHiTiaaigdacaGGPaGaamiuamaaDaaaleaacaaIXaaabaGaaGOmaa aakiaadcfadaWgaaWcbaGaaGOmaaqabaGccaWGrbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaa GaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaiIdacqaHjpWD daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcaaIXaGaaiykai aadgfadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGrbWaaSbaaSqa aiaaikdaaeqaaOGaamiuamaaBaaaleaacaaIYaaabeaakiabgUcaRa qaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiAdacaaI0aaaaiabeM8a 3naaBaaaleaacaaIYaaabeaakiaacIcacaaI0aGaeqyYdC3aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIaaGynaiaacMcacaWGrbWa a0baaSqaaiaaikdaaeaacaaIZaaaaOGaamiuamaaBaaaleaacaaIYa aabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaiAdacaaI0aaaaiab eM8a3naaBaaaleaacaaIYaaabeaakiaacIcacaaI0aGaeqyYdC3aa0 baaSqaaiaaikdaaeaacaaIYaaaaOGaeyOeI0IaaG4maiaacMcacaWG rbWaaSbaaSqaaiaaikdaaeqaaOGaamiuamaaDaaaleaacaaIYaaaba GaaG4maaaaaaaa@D0E5@  (2.19)

S6*=19216ω22(1664ω24940ω22+401)P23Q2P121480ω22(364ω2243)Q2P2P14++123040ω22(6400ω2416256ω22+2287)Q1Q22P13+123040ω22(8960ω24+2336ω22217)Q1P13P22++11024ω22(640ω24692ω22+103)P2P12Q2316144ω22(1280ω24636ω22+73)P24Q1P117680ω22(11520ω243392ω221441)Q13Q22P1+17680ω22(6400ω24+928ω2271)P22Q13P1++118432ω22(5120ω246652ω22+1577)Q24Q1P119216ω22(3200ω241468ω2267)P23Q12Q213072ω22(1408ω242508ω22199)Q23Q12P2+11440ω22(1600ω24+208ω22+109)Q2Q14P218192ω22(80ω24312ω22275)Q25P2+112288ω22(784ω241272ω22+449)Q23P23++12048ω22(2816ω241056ω22+83)Q1P15+13072ω22(12544ω245088ω22+449)P13Q13++18192ω22(176ω24264ω22+83)Q2P25+11024ω22(128ω24+108ω22+51)P22Q22Q1P1++11920ω22(2560ω243344ω22+403)P2Q2P12Q1212048ω22(1280ω241248ω22275)Q15P1(2.20)

3. О невырожденности и изоэнергетической невырожденности системы с функцией Гамильтона (2.6). В рассматриваемой нами задаче о движении точки по поверхности (1.1) функция (2.6) является функцией Гамильтона общего эллиптического типа, т.е. [1] в окрестности равновесия r 1 = r 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaaIXaaabeaakiabg2da9iaadkhadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaaIWaaaaa@3E2E@  система с этой функцией Гамильтона является невырожденной или изоэнергетически невырожденной. Система будет невырожденной, если отличен от нуля определитель второго порядка

D 2 =det 2 H (0) r 1 2 2 H (0) r 1 r 2 2 H (0) r 2 r 1 2 H (0) r 2 2 =4 c 20 c 02 c 11 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIYaaabeaakiabg2da9iGacsgacaGGLbGaaiiDamaafmaabaqb aeqabiGaaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamisamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaaGcbaGaeyOa IyRaamOCamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaaakeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadIeadaahaaWcbeqa aiaacIcacaaIWaGaaiykaaaaaOqaaiabgkGi2kaadkhadaWgaaWcba GaaGymaaqabaGccqGHciITcaWGYbWaaSbaaSqaaiaaikdaaeqaaaaa aOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamisam aaCaaaleqabaGaaiikaiaaicdacaGGPaaaaaGcbaGaeyOaIyRaamOC amaaBaaaleaacaaIYaaabeaakiabgkGi2kaadkhadaWgaaWcbaGaaG ymaaqabaaaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWGibWaaWbaaSqabeaacaGGOaGaaGimaiaacMcaaaaakeaacq GHciITcaWGYbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaaaaaakiaa wMa7caGLkWoacqGH9aqpcaaI0aGaam4yamaaBaaaleaacaaIYaGaaG imaaqabaGccaWGJbWaaSbaaSqaaiaaicdacaaIYaaabeaakiabgkHi TiaadogadaqhaaWcbaGaaGymaiaaigdaaeaacaaIYaaaaaaa@76CB@   (3.1)

А когда отличен от нуля определитель третьего порядка

D 3 =det 2 H (0) r 1 2 2 H (0) r 1 r 2 ω 1 2 H (0) r 2 r 1 2 H (0) r 2 2 ω 2 ω 1 ω 2 0 =2( c 20 ω 2 2 c 11 ω 1 ω 2 + c 02 ω 1 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIZaaabeaakiabg2da9iGacsgacaGGLbGaaiiDamaafmaabaqb aeqabmWaaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaO GaamisamaaCaaaleqabaGaaiikaiaaicdacaGGPaaaaaGcbaGaeyOa IyRaamOCamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaaakeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadIeadaahaaWcbeqa aiaacIcacaaIWaGaaiykaaaaaOqaaiabgkGi2kaadkhadaWgaaWcba GaaGymaaqabaGccqGHciITcaWGYbWaaSbaaSqaaiaaikdaaeqaaaaa aOqaaiabeM8a3naaBaaaleaacaaIXaaabeaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamisamaaCaaaleqabaGaaiik aiaaicdacaGGPaaaaaGcbaGaeyOaIyRaamOCamaaBaaaleaacaaIYa aabeaakiabgkGi2kaadkhadaWgaaWcbaGaaGymaaqabaaaaaGcbaWa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGibWaaWbaaS qabeaacaGGOaGaaGimaiaacMcaaaaakeaacqGHciITcaWGYbWaa0ba aSqaaiaaikdaaeaacaaIYaaaaaaaaOqaaiabeM8a3naaBaaaleaaca aIYaaabeaaaOqaaiabeM8a3naaBaaaleaacaaIXaaabeaaaOqaaiab eM8a3naaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaaaacaGLjWUaay PcSdGaeyypa0JaeyOeI0IaaGOmaiaacIcacaWGJbWaaSbaaSqaaiaa ikdacaaIWaaabeaakiabeM8a3naaDaaaleaacaaIYaaabaGaaGOmaa aakiabgkHiTiaadogadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeqyY dC3aaSbaaSqaaiaaigdaaeqaaOGaeqyYdC3aaSbaaSqaaiaaikdaae qaaOGaey4kaSIaam4yamaaBaaaleaacaaIWaGaaGOmaaqabaGccqaH jpWDdaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGPaGaaiilaaaa@921E@  (3.2)

то система будет изоэнергетически невырожденной.

Для проверки выполнения условий невырожденности и изоэнергетической невырожденности удобно ввести обозначения a= x c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaiabg2da9m aakaaabaGaamiEaaWcbeaakiaadogaaaa@3B8D@ , b= y c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOyaiabg2da9m aakaaabaGaamyEaaWcbeaakiaadogaaaa@3B8F@ . Из (1.6) следует, что в плоскости x,y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiaacYcaca WG5baaaa@3A42@  область допустимых значений безразмерных параметров x,y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiaacYcaca WG5baaaa@3A42@  представляет собой (см. рис. 1) внутренность прямоугольного треугольника с вершинами (0,0), (0,1) , (1,1):

0<x<y<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgYda8i aadIhacqGH8aapcaWG5bGaeyipaWJaaGymaaaa@3E13@  (3.3)

В области (3.3) выражения (1.6) для частот принимают вид

ω 1 = 1 x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaa caWG4baaleqaaaaaaaa@3D3E@ , ω 2 = 1 y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaa caWG5baaleqaaaaaaaa@3D40@  (3.4)

Из (3.4), (3.1) и (2.10 ) получаем

D 2 = y(5x12)4(3x4) 64 x 2 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIYaaabeaakiabg2da9maalaaabaGaamyEaiaacIcacaaI1aGa amiEaiabgkHiTiaaigdacaaIYaGaaiykaiabgkHiTiaaisdacaGGOa GaaG4maiaadIhacqGHsislcaaI0aGaaiykaaqaaiaaiAdacaaI0aGa amiEamaaCaaaleqabaGaaGOmaaaakiaadMhadaahaaWcbeqaaiaaik daaaaaaaaa@4C9D@  (3.5)

На рис.1 показана часть кривой D 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIYaaabeaakiabg2da9iaaicdaaaa@3B12@ , лежащая в треугольнике (3.3). Она является участком гиперболы

y= 4(3x4) (5x12) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9m aalaaabaGaaGinaiaacIcacaaIZaGaamiEaiabgkHiTiaaisdacaGG PaaabaGaaiikaiaaiwdacaWG4bGaeyOeI0IaaGymaiaaikdacaGGPa aaaaaa@44A0@  (3.6)

 

Рис. 1

 

Граничными точками этого участка являются точки (4/7,1) и (4/5,4/5). Область D 2 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIYaaabeaakiabgYda8iaaicdaaaa@3B10@  на рис. 1 выделена серым цветом. Штриховой линией в области D 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIYaaabeaakiabg6da+iaaicdaaaa@3B14@  показана прямая y=4x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9i aaisdacaWG4baaaa@3B56@ . На ней имеет место резонанс третьего порядка ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@ . При этом резонансе полуоси эллипсоида (1.1) связаны равенством b=2a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOyaiabg2da9i aaikdacaWGHbaaaa@3B26@ .

Для определителя D 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIZaaabeaaaaa@3949@  из (3.2), (3.4) и (2.10) имеем выражение

D 3 = y(2x)+2x 4 x 2 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIZaaabeaakiabg2da9maalaaabaGaamyEaiaacIcacaaIYaGa eyOeI0IaamiEaiaacMcacqGHRaWkcaaIYaGaamiEaaqaaiaaisdaca WG4bWaaWbaaSqabeaacaaIYaaaaOGaamyEamaaCaaaleqabaGaaGOm aaaaaaaaaa@4696@  (3.7)

Всюду в области (3.3) величина D 3 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIZaaabeaakiabg6da+iaaicdaaaa@3B15@ .

4. Условно-периодические колебания. Общее решение системы дифференциальных уравнений с функцией Гамильтона H (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaGaaiikaiaaicdacaGGPaaaaaaa@3AA4@  из (2.6) записывается в виде

Q J = 2 r j0 sin φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuamaaBaaale aacaWGkbaabeaakiabg2da9maakaaabaGaaGOmaiaadkhadaWgaaWc baGaamOAaiaaicdaaeqaaaqabaGcciGGZbGaaiyAaiaac6gacqaHgp GAdaWgaaWcbaGaamOAaaqabaaaaa@43CA@ , P J = 2 r j0 cos φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGkbaabeaakiabg2da9maakaaabaGaaGOmaiaadkhadaWgaaWc baGaamOAaiaaicdaaeqaaaqabaGcciGGJbGaai4BaiaacohacqaHgp GAdaWgaaWcbaGaamOAaaqabaaaaa@43C4@ , φ j = Ω j τ+ φ j0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaeyypa0JaeuyQdC1aaSbaaSqaaiaadQgaaeqa aOGaeqiXdqNaey4kaSIaeqOXdO2aaSbaaSqaaiaadQgacaaIWaaabe aaaaa@446B@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  (4.1)

Ω 1 = ω 1 +2 c 20 r 10 + c 11 r 20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdC1aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaaGOmaiaadogadaWgaaWcbaGaaGOmaiaaicdaaeqaaO GaamOCamaaBaaaleaacaaIXaGaaGimaaqabaGccqGHRaWkcaWGJbWa aSbaaSqaaiaaigdacaaIXaaabeaakiaadkhadaWgaaWcbaGaaGOmai aaicdaaeqaaaaa@4ABD@ , Ω 2 = ω 2 + c 11 r 10 +2 c 02 r 20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdC1aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaeqyYdC3aaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGYb WaaSbaaSqaaiaaigdacaaIWaaabeaakiabgUcaRiaaikdacaWGJbWa aSbaaSqaaiaaicdacaaIYaaabeaakiaadkhadaWgaaWcbaGaaGOmai aaicdaaeqaaaaa@4ABF@ , (4.2)

где r j0 , φ j0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaWGQbGaaGimaaqabaGccaGGSaGaeqOXdO2aaSbaaSqaaiaadQga caaIWaaabeaaaaa@3EAF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  начальные значения величин r j , φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaWGQbaabeaakiaacYcacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa aa@3D3B@ , а ω 1 , ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaaiilaiabeM8a3naaBaaaleaacaaIYaaabeaa aaa@3DBA@  и c ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaWGPbGaamOAaaqabaaaaa@3A88@  вычисляются по формулам (1.6) и (2.10) соответственно.

Если нет резонансов k 1 ω 1 = k 2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaaIXaaabeaakiabeM8a3naaBaaaleaacaaIXaaabeaakiabg2da 9iaadUgadaWgaaWcbaGaaGOmaaqabaGccqaHjpWDdaWgaaWcbaGaaG Omaaqabaaaaa@41D3@ , то при малых r 10 , r 20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaaIXaGaaGimaaqabaGccaGGSaGaamOCamaaBaaaleaacaaIYaGa aGimaaqabaaaaa@3D82@  движения в системе с функцией H (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaGaaiikaiaaicdacaGGPaaaaaaa@3AA4@  будут условно-периодическими с рационально независимыми частотами (4.2).

Так как (см. разд. 3) функция (2.6) является функцией Гамильтона общего эллиптического типа, то, согласно КАМ-теории [1], движения в системе с функцией (2.6) для большинства начальных условий r 10 , r 20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaaIXaGaaGimaaqabaGccaGGSaGaamOCamaaBaaaleaacaaIYaGa aGimaaqabaaaaa@3D82@  будут условно-периодическими с частотами (4.2). Множество начальных условий, не принадлежащих этому большинству, имеет малую меру: в окрестности r 1 + r 2 <μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaaIXaaabeaakiabgUcaRiaadkhadaWgaaWcbaGaaGOmaaqabaGc cqGH8aapcqaH8oqBaaa@3F04@  его относительная мера имеет порядок μ 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd02aaWbaaS qabeaacaaIXaGaai4laiaaikdaaaaaaa@3BA4@  [1, 9].

Значения координат ξ,η,ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aOjaacYcacqaHcpGvaaa@3E0B@  движущейся материальной точки можно получить с погрешностью O 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4tamaaBaaale aacaaI3aaabeaaaaa@3958@  из (1.2), равенств ξ= ac q 1 ,η= bc q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 ZaaOaaaeaacaWGHbGaam4yaaWcbeaakiaadghadaWgaaWcbaGaaGym aaqabaGccaGGSaGaeq4TdGMaeyypa0ZaaOaaaeaacaWGIbGaam4yaa WcbeaakiaadghadaWgaaWcbaGaaGOmaaqabaaaaa@456E@ , формул замены (2.3), (2.4), формул (2.8), (2.9) и (2.13) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.15) для функций S 4 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI0aaabaGaaiOkaaaaaaa@3A08@  и S 6 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaDaaale aacaaI2aaabaGaaiOkaaaaaaa@3A0A@  и выражений (2.10), (2.12) для коэффициентов нормальной формы (2.11).

В качестве конкретного примера рассмотрим случай движения точки по эллипсоидальной поверхности (1.2), у которой c=2 2 a=2b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yaiabg2da9i aaikdadaGcaaqaaiaaikdaaSqabaGccaWGHbGaeyypa0JaaGOmaiaa dkgaaaa@3EB1@ . В этом случае ω 1 =2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmamaakaaabaGaaGOmaaWcbeaa aaa@3CEE@ , ω 2 =2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGOmaaaa@3C18@ ,

S 4 * = 37 2 32 Q 1 3 P 1 29 8 Q 1 Q 2 2 P 1 29 2 32 P 1 3 Q 1 + 31 8 P 2 2 Q 1 P 1 15 2 4 P 1 2 P 2 Q 2 +4 2 Q 1 2 Q 2 P 2 + 21 32 Q 2 3 P 2 13 32 Q 2 P 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacaWGtbWaa0 baaSqaaiaaisdaaeaacaGGQaaaaOGaeyypa0ZaaSaaaeaacaaIZaGa aG4namaakaaabaGaaGOmaaWcbeaaaOqaaiaaiodacaaIYaaaaiaadg fadaqhaaWcbaGaaGymaaqaaiaaiodaaaGccaWGqbWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0YaaSaaaeaacaaIYaGaaGyoaaqaaiaaiIdaaa GaamyuamaaBaaaleaacaaIXaaabeaakiaadgfadaqhaaWcbaGaaGOm aaqaaiaaikdaaaGccaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 YaaSaaaeaacaaIYaGaaGyoamaakaaabaGaaGOmaaWcbeaaaOqaaiaa iodacaaIYaaaaiaadcfadaqhaaWcbaGaaGymaaqaaiaaiodaaaGcca WGrbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaSaaaeaacaaIZaGa aGymaaqaaiaaiIdaaaGaamiuamaaDaaaleaacaaIYaaabaGaaGOmaa aakiaadgfadaWgaaWcbaGaaGymaaqabaGccaWGqbWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0cabaGaeyOeI0YaaSaaaeaacaaIXaGaaGynam aakaaabaGaaGOmaaWcbeaaaOqaaiaaisdaaaGaamiuamaaDaaaleaa caaIXaaabaGaaGOmaaaakiaadcfadaWgaaWcbaGaaGOmaaqabaGcca WGrbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGinamaakaaabaGa aGOmaaWcbeaakiaadgfadaqhaaWcbaGaaGymaaqaaiaaikdaaaGcca WGrbWaaSbaaSqaaiaaikdaaeqaaOGaamiuamaaBaaaleaacaaIYaaa beaakiabgUcaRmaalaaabaGaaGOmaiaaigdaaeaacaaIZaGaaGOmaa aacaWGrbWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaamiuamaaBaaa leaacaaIYaaabeaakiabgkHiTmaalaaabaGaaGymaiaaiodaaeaaca aIZaGaaGOmaaaacaWGrbWaaSbaaSqaaiaaikdaaeqaaOGaamiuamaa DaaaleaacaaIYaaabaGaaG4maaaaaaaa@830C@  (4.3)

S 6 * = 2349 1024 P 1 Q 1 5 + 243 2048 P 2 Q 2 5 + 1137 14 P 2 Q 1 4 Q 2 + 4187 128 Q 1 Q 2 4 P 1 115909 2 1792 Q 1 3 Q 2 2 P 1 3837 2 128 Q 1 2 Q 2 3 P 2 + 13483 512 Q 1 3 P 1 3 + 2635 1024 Q 2 3 P 2 3 + + 91927 2 1792 Q 1 3 P 1 P 2 2 + 2523 2 64 Q 2 3 P 1 2 P 2 2035 2 128 Q 1 2 Q 2 P 2 3 14641 2 1792 Q 1 Q 2 2 P 1 3 1429 28 Q 1 2 Q 2 P 1 2 P 2 5225 128 Q 1 Q 2 2 P 1 P 2 2 353 16 P 1 Q 1 P 2 4 7869 224 P 1 4 Q 2 P 2 + + 9235 1024 Q 1 P 1 5 + 1843 2048 Q 2 P 2 5 + 36971 2 1792 Q 1 P 1 3 P 2 2 + 291 2 32 Q 2 P 1 2 P 2 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaqabeaacaWGtbWaa0 baaSqaaiaaiAdaaeaacaGGQaaaaOGaeyypa0JaeyOeI0YaaSaaaeaa caaIYaGaaG4maiaaisdacaaI5aaabaGaaGymaiaaicdacaaIYaGaaG inaaaacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaamyuamaaDaaaleaa caaIXaaabaGaaGynaaaakiabgUcaRmaalaaabaGaaGOmaiaaisdaca aIZaaabaGaaGOmaiaaicdacaaI0aGaaGioaaaacaWGqbWaaSbaaSqa aiaaikdaaeqaaOGaamyuamaaDaaaleaacaaIYaaabaGaaGynaaaaki abgUcaRmaalaaabaGaaGymaiaaigdacaaIZaGaaG4naaqaaiaaigda caaI0aaaaiaadcfadaWgaaWcbaGaaGOmaaqabaGccaWGrbWaa0baaS qaaiaaigdaaeaacaaI0aaaaOGaamyuamaaBaaaleaacaaIYaaabeaa kiabgUcaRmaalaaabaGaaGinaiaaigdacaaI4aGaaG4naaqaaiaaig dacaaIYaGaaGioaaaacaWGrbWaaSbaaSqaaiaaigdaaeqaaOGaamyu amaaDaaaleaacaaIYaaabaGaaGinaaaakiaadcfadaWgaaWcbaGaaG ymaaqabaGccqGHsislaeaacqGHsisldaWcaaqaaiaaigdacaaIXaGa aGynaiaaiMdacaaIWaGaaGyoamaakaaabaGaaGOmaaWcbeaaaOqaai aaigdacaaI3aGaaGyoaiaaikdaaaGaamyuamaaDaaaleaacaaIXaaa baGaaG4maaaakiaadgfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcca WGqbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacaaIZaGa aGioaiaaiodacaaI3aWaaOaaaeaacaaIYaaaleqaaaGcbaGaaGymai aaikdacaaI4aaaaiaadgfadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc caWGrbWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaamiuamaaBaaale aacaaIYaaabeaakiabgUcaRmaalaaabaGaaGymaiaaiodacaaI0aGa aGioaiaaiodaaeaacaaI1aGaaGymaiaaikdaaaGaamyuamaaDaaale aacaaIXaaabaGaaG4maaaakiaadcfadaqhaaWcbaGaaGymaaqaaiaa iodaaaGccqGHRaWkdaWcaaqaaiaaikdacaaI2aGaaG4maiaaiwdaae aacaaIXaGaaGimaiaaikdacaaI0aaaaiaadgfadaqhaaWcbaGaaGOm aaqaaiaaiodaaaGccaWGqbWaa0baaSqaaiaaikdaaeaacaaIZaaaaO Gaey4kaScabaGaey4kaSYaaSaaaeaacaaI5aGaaGymaiaaiMdacaaI YaGaaG4namaakaaabaGaaGOmaaWcbeaaaOqaaiaaigdacaaI3aGaaG yoaiaaikdaaaGaamyuamaaDaaaleaacaaIXaaabaGaaG4maaaakiaa dcfadaWgaaWcbaGaaGymaaqabaGccaWGqbWaa0baaSqaaiaaikdaae aacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIYaGaaGynaiaaikdacaaI ZaWaaOaaaeaacaaIYaaaleqaaaGcbaGaaGOnaiaaisdaaaGaamyuam aaDaaaleaacaaIYaaabaGaaG4maaaakiaadcfadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccaWGqbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0 YaaSaaaeaacaaIYaGaaGimaiaaiodacaaI1aWaaOaaaeaacaaIYaaa leqaaaGcbaGaaGymaiaaikdacaaI4aaaaiaadgfadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaWGrbWaaSbaaSqaaiaaikdaaeqaaOGaamiu amaaDaaaleaacaaIYaaabaGaaG4maaaakiabgkHiTmaalaaabaGaaG ymaiaaisdacaaI2aGaaGinaiaaigdadaGcaaqaaiaaikdaaSqabaaa keaacaaIXaGaaG4naiaaiMdacaaIYaaaaiaadgfadaWgaaWcbaGaaG ymaaqabaGccaWGrbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaamiu amaaDaaaleaacaaIXaaabaGaaG4maaaakiabgkHiTaqaaiabgkHiTm aalaaabaGaaGymaiaaisdacaaIYaGaaGyoaaqaaiaaikdacaaI4aaa aiaadgfadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGrbWaaSbaaS qaaiaaikdaaeqaaOGaamiuamaaDaaaleaacaaIXaaabaGaaGOmaaaa kiaadcfadaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiaaiw dacaaIYaGaaGOmaiaaiwdaaeaacaaIXaGaaGOmaiaaiIdaaaGaamyu amaaBaaaleaacaaIXaaabeaakiaadgfadaqhaaWcbaGaaGOmaaqaai aaikdaaaGccaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaamiuamaaDaaa leaacaaIYaaabaGaaGOmaaaakiabgkHiTmaalaaabaGaaG4maiaaiw dacaaIZaaabaGaaGymaiaaiAdaaaGaamiuamaaBaaaleaacaaIXaaa beaakiaadgfadaWgaaWcbaGaaGymaaqabaGccaWGqbWaa0baaSqaai aaikdaaeaacaaI0aaaaOGaeyOeI0YaaSaaaeaacaaI3aGaaGioaiaa iAdacaaI5aaabaGaaGOmaiaaikdacaaI0aaaaiaadcfadaqhaaWcba GaaGymaaqaaiaaisdaaaGccaWGrbWaaSbaaSqaaiaaikdaaeqaaOGa amiuamaaBaaaleaacaaIYaaabeaakiabgUcaRaqaaiabgUcaRmaala aabaGaaGyoaiaaikdacaaIZaGaaGynaaqaaiaaigdacaaIWaGaaGOm aiaaisdaaaGaamyuamaaBaaaleaacaaIXaaabeaakiaadcfadaqhaa WcbaGaaGymaaqaaiaaiwdaaaGccqGHRaWkdaWcaaqaaiaaigdacaaI 4aGaaGinaiaaiodaaeaacaaIYaGaaGimaiaaisdacaaI4aaaaiaadg fadaWgaaWcbaGaaGOmaaqabaGccaWGqbWaa0baaSqaaiaaikdaaeaa caaI1aaaaOGaey4kaSYaaSaaaeaacaaIZaGaaGOnaiaaiMdacaaI3a GaaGymamaakaaabaGaaGOmaaWcbeaaaOqaaiaaigdacaaI3aGaaGyo aiaaikdaaaGaamyuamaaBaaaleaacaaIXaaabeaakiaadcfadaqhaa WcbaGaaGymaaqaaiaaiodaaaGccaWGqbWaa0baaSqaaiaaikdaaeaa caaIYaaaaOGaey4kaSYaaSaaaeaacaaIYaGaaGyoaiaaigdadaGcaa qaaiaaikdaaSqabaaakeaacaaIZaGaaGOmaaaacaWGrbWaaSbaaSqa aiaaikdaaeqaaOGaamiuamaaDaaaleaacaaIXaaabaGaaGOmaaaaki aadcfadaqhaaWcbaGaaGOmaaqaaiaaiodaaaGccaGGSaaaaaa@4217@  (4.4)

а коэффициенты нормальной формы (2.11) имеют такие значения:

c 20 = 29 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGimaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaikda caaI5aaabaGaaGOmaaaaaaa@3E69@ , c 11 = 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpdaGcaaqaaiaaikdaaSqabaaa aa@3C08@ , c 02 = 13 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaGOmaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaigda caaIZaaabaGaaGinaaaaaaa@3E64@                   (4.5)

c 30 = 2519 2 16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIZaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaaI1aGa aGymaiaaiMdadaGcaaqaaiaaikdaaSqabaaakeaacaaIXaGaaGOnaa aaaaa@4097@ , c 21 = 843 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaiIdacaaI0aGa aG4maaqaaiaaisdaaaaaaa@3E3D@ , c 12 =63 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGOmaaqabaGccqGH9aqpcqGHsislcaaI2aGaaG4mamaa kaaabaGaaGOmaaWcbeaaaaa@3E73@ , c 03 = 503 32 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaaiwdacaaIWaGa aG4maaqaaiaaiodacaaIYaaaaaaa@3EF1@  (4.6)

Формулы (4.3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (4.6) позволяют вычислить величины ξ,η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aObaa@3BB6@  с погрешностью O 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4tamaaBaaale aacaaI3aaabeaaaaa@3958@ . Для краткости выпишем только первые члены соответствующих разложений:

ξ= c 2 1/4 r 10 sin φ 1 + O 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 ZaaSaaaeaacaWGJbaabaGaaGOmamaaCaaaleqabaGaaGymaiaac+ca caaI0aaaaaaakmaakaaabaGaamOCamaaBaaaleaacaaIXaGaaGimaa qabaaabeaakiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaaI XaaabeaakiabgUcaRiaad+eadaWgaaWcbaGaaGOmaaqabaaaaa@494D@ , η=c r 20 sin φ 2 + O 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 Jaam4yamaakaaabaGaamOCamaaBaaaleaacaaIYaGaaGimaaqabaaa beaakiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaaIYaaabe aakiabgUcaRiaad+eadaWgaaWcbaGaaGOmaaqabaaaaa@4609@  (4.7)

В плоскости Oξη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiabe67a4j abeE7aObaa@3BDA@  траектория материальной точки всюду плотно заполняет прямоугольник со сторонами 2 3/4 c r 10 + O 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmamaaCaaale qabaGaaG4maiaac+cacaaI0aaaaOGaam4yamaakaaabaGaamOCamaa BaaaleaacaaIXaGaaGimaaqabaaabeaakiabgUcaRiaad+eadaWgaa WcbaGaaGOmaaqabaaaaa@40F0@  и 2c r 20 + O 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiaadogada GcaaqaaiaadkhadaWgaaWcbaGaaGOmaiaaicdaaeqaaaqabaGccqGH RaWkcaWGpbWaaSbaaSqaaiaaikdaaeqaaaaa@3E8C@ . Для координаты ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyfaaa@393C@  из (4.7) и (1.2) получаем такое выражение:

ς=c+2c( 2 r 10 sin 2 φ 1 + r 20 sin 2 φ 2 )+ O 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyLaeyypa0 JaeyOeI0Iaam4yaiabgUcaRiaaikdacaWGJbGaaiikamaakaaabaGa aGOmaaWcbeaakiaadkhadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaci 4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamOCamaaBaaaleaacaaIYaGaaG imaaqabaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGc cqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey4kaSIaam4tam aaBaaaleaacaaIZaaabeaaaaa@5690@  (4.8)

Из (4.8) видно, что при малых r 10 , r 20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacaaIXaGaaGimaaqabaGccaGGSaGaamOCamaaBaaaleaacaaIYaGa aGimaaqabaaaaa@3D82@  материальная точка во все время движения по поверхности (1.1) не может подняться над ее положением равновесия ξ=η=0,ς=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 Jaeq4TdGMaeyypa0JaaGimaiaacYcacqaHcpGvcqGH9aqpcqGHsisl caWGJbaaaa@42FC@  выше, чем на 2c( 2 r 10 + r 20 )+ O 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiaadogaca GGOaWaaOaaaeaacaaIYaaaleqaaOGaamOCamaaBaaaleaacaaIXaGa aGimaaqabaGccqGHRaWkcaWGYbWaaSbaaSqaaiaaikdacaaIWaaabe aakiaacMcacqGHRaWkcaWGpbWaaSbaaSqaaiaaiodaaeqaaaaa@443B@ .

5. О колебаниях при резонансе ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@ . Этот резонанс реализуется на прямой y=4x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9i aaisdacaWG4baaaa@3B56@ , показанной на рис. 1 штриховой линией. Согласно разд. 1 и 2 нормальная форма функции Гамильтона возмущенного движения записывается в виде

H= ω 1 r 1 + ω 2 r 2 + m+n=2 3 c mn r 1 m r 2 n + α 12 r 1 r 2 2 cos(2 φ 1 4 φ 2 )+ O 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i abeM8a3naaBaaaleaacaaIXaaabeaakiaadkhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaWGYb WaaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaabCaeaacaWGJbWaaSba aSqaaiaad2gacaWGUbaabeaakiaadkhadaqhaaWcbaGaaGymaaqaai aad2gaaaaabaGaamyBaiabgUcaRiaad6gacqGH9aqpcaaIYaaabaGa aG4maaqdcqGHris5aOGaamOCamaaDaaaleaacaaIYaaabaGaamOBaa aakiabgUcaRiabeg7aHnaaBaaaleaacaaIXaGaaGOmaaqabaGccaWG YbWaaSbaaSqaaiaaigdaaeqaaOGaamOCamaaDaaaleaacaaIYaaaba GaaGOmaaaakiGacogacaGGVbGaai4CaiaacIcacaaIYaGaeqOXdO2a aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGinaiabeA8aQnaaBaaale aacaaIYaaabeaakiaacMcacqGHRaWkcaWGpbWaaSbaaSqaaiaaiIda aeqaaaaa@6C04@ , (5.1)

где ω 1 =1/ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGymaiaac+cadaGcaaqaaiaadIha aSqabaaaaa@3DE1@ , ω 2 =1/(2 x ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGymaiaac+cacaGGOaGaaGOmamaa kaaabaGaamiEaaWcbeaakiaacMcaaaa@4001@ , причем 0<x<1/4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgYda8i aadIhacqGH8aapcaaIXaGaai4laiaaisdaaaa@3D82@ .

Из (2.16) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.18) следует, что коэффициенты нормальной формы (5.1) можно записать как функции величины x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3894@ :

c 20 = 3x4 16 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaiodacaWG4bGa eyOeI0IaaGinaaqaaiaaigdacaaI2aGaamiEamaaCaaaleqabaGaaG Omaaaaaaaaaa@4207@ , c 11 = 1 8x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI 4aGaamiEaaaaaaa@3DBB@ , c 02 = 3x1 64 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaiodacaWG4bGa eyOeI0IaaGymaaqaaiaaiAdacaaI0aGaamiEamaaCaaaleqabaGaaG Omaaaaaaaaaa@4207@           (5.2)

c 30 = 23 x 2 72x+48 256 x 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIZaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaaIZaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiEdacaaIYaGaam iEaiabgUcaRiaaisdacaaI4aaabaGaaGOmaiaaiwdacaaI2aGaamiE amaaCaaaleqabaGaaG4naiaac+cacaaIYaaaaaaaaaa@4A09@ , c 21 = 31 x 2 56x+16 384 x 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIYaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaaiodacaaIXaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiwdacaaI2aGaam iEaiabgUcaRiaaigdacaaI2aaabaGaaG4maiaaiIdacaaI0aGaamiE amaaCaaaleqabaGaaG4naiaac+cacaaIYaaaaaaaaaa@4A07@ , c 12 = 13 x 2 2x2 384 x 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdacaaIZaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaey OeI0IaaGOmaaqaaiaaiodacaaI4aGaaGinaiaadIhadaahaaWcbeqa aiaaiEdacaGGVaGaaGOmaaaaaaaaaa@4890@

c 03 = 23 x 2 18x+3 2048 x 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaBaaale aacaaIWaGaaG4maaqabaGccqGH9aqpdaWcaaqaaiaaikdacaaIZaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaaI4aGaam iEaiabgUcaRiaaiodaaeaacaaIYaGaaGimaiaaisdacaaI4aGaamiE amaaCaaaleqabaGaaG4naiaac+cacaaIYaaaaaaaaaa@4A01@ , α 12 = 3(3x) 512 x 5/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqySde2aaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9maalaaabaGaaG4maiaacIca caaIZaGaeyOeI0IaamiEaiaacMcaaeaacaaI1aGaaGymaiaaikdaca WG4bWaaWbaaSqabeaacaaI1aGaai4laiaaikdaaaaaaaaa@4644@  (5.3)

Если в (5.1) отбросить величины O 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4tamaaBaaale aacaaI4aaabeaaaaa@3959@ , то придем к приближенной системе, которая, помимо интеграла H=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i GacogacaGGVbGaaiOBaiaacohacaGG0baaaa@3E27@  (имеющимся и в полной системе), допускает еще один, характерный для рассматриваемого резонанса ω 1 =2 ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaaGOmaiabeM8a3naaBaaaleaacaaI Yaaabeaaaaa@3ECC@ , интеграл

2 r 1 + r 2 = c ˜ =const>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiaadkhada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGYbWaaSbaaSqaaiaaikda aeqaaOGaeyypa0Jabm4yayaaiaGaeyypa0Jaci4yaiaac+gacaGGUb Gaai4CaiaacshacqGH+aGpcaaIWaaaaa@4688@  (5.4)

Для исследования периодических колебаний, обусловленных наличием резонанса, сделаем в функции Гамильтона (5.1) унивалентную каноническую замену переменных φ j , r j ψ j , R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaaiilaiaadkhadaWgaaWcbaGaamOAaaqabaGc cqGHsgIRcqaHipqEdaWgaaWcbaGaamOAaaqabaGccaGGSaGaamOuam aaBaaaleaacaWGQbaabeaaaaa@44C7@   (j=1,2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGPaaaaa@3D0C@  по формулам

ψ 1 = φ 1 2 φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdK3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeqOXdO2aaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaaGOmaiabeA8aQnaaBaaaleaacaaIYaaabeaaaaa@4258@ , ψ 2 = φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdK3aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaeqOXdO2aaSbaaSqaaiaaikdaaeqa aaaa@3E02@ , R 1 = r 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaakiabg2da9iaadkhadaWgaaWcbaGaaGymaaqabaaa aa@3C43@ , R 2 =2 r 1 + r 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaakiabg2da9iaaikdacaWGYbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamOCamaaBaaaleaacaaIYaaabeaaaaa@3FCB@  (5.5)

В приближенной системе величина ψ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdK3aaSbaaS qaaiaaikdaaeqaaaaa@3A4D@  будет циклической координатой. Соответствующий ей интеграл MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  это интеграл (5.4), т.е. R 2 = c ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaakiabg2da9iqadogagaacaaaa@3B5D@ .

Введем вместо ψ 1 , R 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdK3aaSbaaS qaaiaaigdaaeqaaOGaaiilaiaadkfadaWgaaWcbaGaaGymaaqabaaa aa@3CC4@  новые канонически сопряженные переменные θ,ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaaiilai abeg8aYbaa@3BBD@  по формулам

ψ 1 =θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdK3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeqiUdehaaa@3D12@ , R 1 = c ˜ ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaakiabg2da9iqadogagaacaiabeg8aYbaa@3D1C@   (0<ρ<1/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaaicdacq GH8aapcqaHbpGCcqGH8aapcaaIXaGaai4laiaaikdacaGGPaaaaa@3F9C@  (5.6)

и примем в качестве новой независимой переменной величину s= c ˜ τ/16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i qadogagaacaiabes8a0jaac+cacaaIXaGaaGOnaaaa@3E7F@ . Тогда, если отбросить не зависящие от θ,ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaaiilai abeg8aYbaa@3BBD@  слагаемые, то функция Гамильтона Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdCeaaa@38FF@  приближенной системы запишется в следующем виде:

Γ=1xx2103x2146x+43192x7/2c~ρ+2x5x2+41x2118x+4132x7/2c~ρ220x246x5548x7/2c~ρ3+3(3x)c~32x5/2ρ(1-2ρ)2cos2θ (5.7)

Соответствующие канонические уравнения

dρ ds = Γ θ = 3(3x) c ˜ 16 x 5/2 ρ (12ρ) 2 sin2θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaeqyWdihabaGaamizaiaadohaaaGaeyypa0JaeyOeI0YaaSaaaeaa cqGHciITcqqHtoWraeaacqGHciITcqaH4oqCaaGaeyypa0ZaaSaaae aacaaIZaGaaiikaiaaiodacqGHsislcaWG4bGaaiykaiqadogagaac aaqaaiaaigdacaaI2aGaamiEamaaCaaaleqabaGaaGynaiaac+caca aIYaaaaaaakiabeg8aYjaacIcacaaIXaGaeyOeI0IaaGOmaiabeg8a YjaacMcadaahaaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gaca aIYaGaeqiUdehaaa@5D3F@ , dθ ds = Γ ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaeqiUdehabaGaamizaiaadohaaaGaeyypa0ZaaSaaaeaacqGHciIT cqqHtoWraeaacqGHciITcqaHbpGCaaaaaa@4331@ (5.8)

допускают четыре отличающихся одно от другого равновесных решения θ * , ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiaacQcaaeqaaOGaaiilaiabeg8aYnaaBaaaleaacaGGQaaabeaa aaa@3D7B@ , в которых

θ * = kπ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiaacQcaaeqaaOGaeyypa0ZaaSaaaeaacaWGRbGaeqiWdahabaGa aGOmaaaaaaa@3EB0@ (k=0,1,2,3) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiaadUgacq GH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYcacaaIZaGa aiykaaaa@3FE4@ , (5.9)

а ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaaaa@3A31@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  корень квадратного уравнения . При четном k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  оно имеет вид

192 x 3/2 [(1x)2(52x) ρ * ] c ˜ [(121 x 2 200x+43) 12(53 x 2 154x+41) ρ * +12(38 x 2 100x55) ρ * 2 ]=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaqabeaacaaIXaGaaG yoaiaaikdacaWG4bWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGc caGGBbGaaiikaiaaigdacqGHsislcaWG4bGaaiykaiabgkHiTiaaik dacaGGOaGaaGynaiabgkHiTiaaikdacaWG4bGaaiykaiabeg8aYnaa BaaaleaacaGGQaaabeaakiaac2facqGHsislceWGJbGbaGaacaGGBb GaaiikaiaaigdacaaIYaGaaGymaiaadIhadaahaaWcbeqaaiaaikda aaGccqGHsislcaaIYaGaaGimaiaaicdacaWG4bGaey4kaSIaaGinai aaiodacaGGPaGaeyOeI0cabaGaeyOeI0IaaGymaiaaikdacaGGOaGa aGynaiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaG ymaiaaiwdacaaI0aGaamiEaiabgUcaRiaaisdacaaIXaGaaiykaiab eg8aYnaaBaaaleaacaGGQaaabeaakiabgUcaRiaaigdacaaIYaGaai ikaiaaiodacaaI4aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaaigdacaaIWaGaaGimaiaadIhacqGHsislcaaI1aGaaGynaiaacM cacqaHbpGCdaqhaaWcbaGaaiOkaaqaaiaaikdaaaGccaGGDbGaeyyp a0JaaGimaiaacYcaaaaa@8044@  (5.10)

а при нечетном:

192 x 3/2 [(1x)2(52x) ρ * ] c ˜ [(85 x 2 92x+43) 12(29 x 2 82x+41) ρ * +12(2 x 2 +8x55) ρ * 2 ]=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaqabeaacaaIXaGaaG yoaiaaikdacaWG4bWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGc caGGBbGaaiikaiaaigdacqGHsislcaWG4bGaaiykaiabgkHiTiaaik dacaGGOaGaaGynaiabgkHiTiaaikdacaWG4bGaaiykaiabeg8aYnaa BaaaleaacaGGQaaabeaakiaac2facqGHsislceWGJbGbaGaacaGGBb GaaiikaiaaiIdacaaI1aGaamiEamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaaiMdacaaIYaGaamiEaiabgUcaRiaaisdacaaIZaGaaiykai abgkHiTaqaaiabgkHiTiaaigdacaaIYaGaaiikaiaaikdacaaI5aGa amiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiIdacaaIYaGaam iEaiabgUcaRiaaisdacaaIXaGaaiykaiabeg8aYnaaBaaaleaacaGG QaaabeaakiabgUcaRiaaigdacaaIYaGaaiikaiaaikdacaWG4bWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGioaiaadIhacqGHsislcaaI 1aGaaGynaiaacMcacqaHbpGCdaqhaaWcbaGaaiOkaaqaaiaaikdaaa GccaGGDbGaeyypa0JaaGimaaaaaa@7B40@  (5.11)

При малых c ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaaaaa@388E@  равновесное значение ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaaaa@3A31@  можно представить в виде ряда по степеням c ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaaaaa@388E@ : ρ * = ρ 0 + c ˜ ρ 1 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaOGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqa aOGaey4kaSIabm4yayaaiaGaeqyWdi3aaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaeS47IWeaaa@454B@ . Из (5.10) и (5.11) следует, что,как для четных, так и для нечетных знчений k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@ , имеем

ρ 0 = 1x 2(52x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamiE aaqaaiaaikdacaGGOaGaaGynaiabgkHiTiaaikdacaWG4bGaaiykaa aaaaa@437C@  (5.12)

В интервале 0<x<1/4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgYda8i aadIhacqGH8aapcaaIXaGaai4laiaaisdaaaa@3D82@  допустимых значений x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3894@  функция ρ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaaicdaaeqaaaaa@3A3D@  монотонно убывает, причем

1 10 > ρ 0 > 1 12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaaIXa aabaGaaGymaiaaicdaaaGaeyOpa4JaeqyWdi3aaSbaaSqaaiaaicda aeqaaOGaeyOpa4ZaaSaaaeaacaaIXaaabaGaaGymaiaaikdaaaaaaa@40D9@  (5.13)

Из (5.10) и (5.11) получаем, что при четных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  величина ρ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaaigdaaeqaaaaa@3A3E@  задается равенством

ρ 1 = (4x) 2 (19 x 2 11x+10) 192 x 3/2 (2x5) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaGGOaGaaGin aiabgkHiTiaadIhacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiikai aaigdacaaI5aGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa igdacaaIXaGaamiEaiabgUcaRiaaigdacaaIWaGaaiykaaqaaiaaig dacaaI5aGaaGOmaiaadIhadaahaaWcbeqaaiaaiodacaGGVaGaaGOm aaaakiaacIcacaaIYaGaamiEaiabgkHiTiaaiwdacaGGPaWaaWbaaS qabeaacaaIZaaaaaaaaaa@56FF@ , (5.14)

а при нечетных:

ρ 1 = (4x)( x 3 69 x 2 +162x40) 192 x 3/2 (2x5) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaGGOaGaaGinaiabgkHi TiaadIhacaGGPaGaaiikaiaadIhadaahaaWcbeqaaiaaiodaaaGccq GHsislcaaI2aGaaGyoaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIXaGaaGOnaiaaikdacaWG4bGaeyOeI0IaaGinaiaaicdaca GGPaaabaGaaGymaiaaiMdacaaIYaGaamiEamaaCaaaleqabaGaaG4m aiaac+cacaaIYaaaaOGaaiikaiaaikdacaWG4bGaeyOeI0IaaGynai aacMcadaahaaWcbeqaaiaaiodaaaaaaaaa@58C6@  (5.15)

На интервале 0<x<1/4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgYda8i aadIhacqGH8aapcaaIXaGaai4laiaaisdaaaa@3D82@  обе функции (5.14) и (5.15) являются монотонно убывающими, причем функция (5.14) удовлетворяет неравенству

+> ρ 1 > 125 2304 =0.0542534722... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaey4kaSIaeyOhIu QaeyOpa4JaeqyWdi3aaSbaaSqaaiaaigdaaeqaaOGaeyOpa4ZaaSaa aeaacaaIXaGaaGOmaiaaiwdaaeaacaaIYaGaaG4maiaaicdacaaI0a aaaiabg2da9iaaicdacaGGUaGaaGimaiaaiwdacaaI0aGaaGOmaiaa iwdacaaIZaGaaGinaiaaiEdacaaIYaGaaGOmaiaac6cacaGGUaGaai Olaaaa@4FD0@ ,

а функция (5.15) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  неравенству

+> ρ 1 > 7 768 =0.0065104166... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaey4kaSIaeyOhIu QaeyOpa4JaeqyWdi3aaSbaaSqaaiaaigdaaeqaaOGaeyOpa4ZaaSaa aeaacaaI3aaabaGaaG4naiaaiAdacaaI4aaaaiabg2da9iaaicdaca GGUaGaaGimaiaaicdacaaI2aGaaGynaiaaigdacaaIWaGaaGinaiaa igdacaaI2aGaaGOnaiaac6cacaGGUaGaaiOlaaaa@4DA8@

Характеристическое уравнение линеаризованной в окрестности равновесия θ * , ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiaacQcaaeqaaOGaaiilaiabeg8aYnaaBaaaleaacaGGQaaabeaa aaa@3D7B@  системы (5.8) имеет вид

λ 2 + (1) k c ˜ 3(1x)(3x) (4x) 2 8 x 9/2 (52x) 2 +O( c ˜ 2 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4UdW2aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaiikaiabgkHiTiaaigdacaGGPaWa aWbaaSqabeaacaWGRbaaaOGabm4yayaaiaWaaSaaaeaacaaIZaGaai ikaiaaigdacqGHsislcaWG4bGaaiykaiaacIcacaaIZaGaeyOeI0Ia amiEaiaacMcacaGGOaGaaGinaiabgkHiTiaadIhacaGGPaWaaWbaaS qabeaacaaIYaaaaaGcbaGaaGioaiaadIhadaahaaWcbeqaaiaaiMda caGGVaGaaGOmaaaakiaacIcacaaI1aGaeyOeI0IaaGOmaiaadIhaca GGPaWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaad+eacaGGOaGa bm4yayaaiaWaaWbaaSqabeaacaaIYaaaaOGaaiykaiabg2da9iaaic daaaa@5E90@  (5.16)

Коэффициент при (1) k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaiikaiabgkHiTi aaigdacaGGPaWaaWbaaSqabeaacaWGRbaaaaaa@3BB5@  положителен для любых значений x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3894@  из интервала 0<x<1/4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgYda8i aadIhacqGH8aapcaaIXaGaai4laiaaisdaaaa@3D82@ , поэтому для малых c ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaaaaa@388E@  найденным равновесиям в случае четных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  отвечают в фазовой плоскости особые точки типа центр, а в случае нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  точки типа седло.

Методом Пуанкаре [5] можно показать, что в полной системе с функцией Гамильтона (5.1) существуют периодические движения, аналитические относительно c ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaOaaaeaaceWGJb GbaGaaaSqabaaaaa@38A9@ . При четных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  эти периодические движения орбитально устойчивы, а при нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  неустойчивы.

Соответствующие периодическим движениям координаты ξ= ac q 1 ,η= bc q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 ZaaOaaaeaacaWGHbGaam4yaaWcbeaakiaadghadaWgaaWcbaGaaGym aaqabaGccaGGSaGaeq4TdGMaeyypa0ZaaOaaaeaacaWGIbGaam4yaa WcbeaakiaadghadaWgaaWcbaGaaGOmaaqabaaaaa@456E@  материальной точки могут быть получены с погрешностью порядка c ˜ 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaWaaW baaSqabeaacaaI3aGaai4laiaaikdaaaaaaa@3AEB@  из формул (2.3), (2.4), (2.19), (2.20) замены q j , p j Q j , P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGQbaabeaakiaacYcacaWGWbWaaSbaaSqaaiaadQgaaeqaaOGa eyOKH4QaamyuamaaBaaaleaacaWGQbaabeaakiaacYcacaWGqbWaaS baaSqaaiaadQgaaeqaaaaa@4304@ , выражений (1.6) и (3.4) для частот линейных колебаний и равенств (2.7), (5.5), (5.6), (5.9). Выпишем в явном виде только первые члены разложений ξ,η MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaaiilai abeE7aObaa@3BB6@  по степеням c ˜ 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaWaaW baaSqabeaacaaIXaGaai4laiaaikdaaaaaaa@3AE5@ . С погрешностью порядка c ˜ 3/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaWaaW baaSqabeaacaaIZaGaai4laiaaikdaaaaaaa@3AE7@  имеем такие выражения:

ξ=c x 4 2 c ˜ ρ * sin( kπ 2 +2 φ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 Jaam4yamaakeaabaGaamiEaaWcbaGaaGinaaaakmaakaaabaGaaGOm aiqadogagaacaiabeg8aYnaaBaaaleaacaGGQaaabeaaaeqaaOGaci 4CaiaacMgacaGGUbGaaiikamaalaaabaGaam4Aaiabec8aWbqaaiaa ikdaaaGaey4kaSIaaGOmaiabeA8aQnaaBaaaleaacaaIYaaabeaaki aacMcaaaa@4D86@ , η=2c x 4 c ˜ (12 ρ * ) sin φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGOmaiaadogadaGcbaqaaiaadIhaaSqaaiaaisdaaaGcdaGcaaqa aiqadogagaacaiaacIcacaaIXaGaeyOeI0IaaGOmaiabeg8aYnaaBa aaleaacaGGQaaabeaakiaacMcaaSqabaGcciGGZbGaaiyAaiaac6ga cqaHgpGAdaWgaaWcbaGaaGOmaaqabaaaaa@4AC7@  (5.17)

Отсюда, с учетом равенств (1.2), (1.6) и (3.4) , находим, что с погрешностью порядка c ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaWaaW baaSqabeaacaaIYaaaaaaa@3977@  координата ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyfaaa@393C@  материальной точки может быть вычислена по формуле

ς=c+c c ˜ 2 x [2 ρ * sin 2 ( kπ 2 +2 φ 2 )+(12 ρ * ) sin 2 φ 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyLaeyypa0 JaeyOeI0Iaam4yaiabgUcaRiaadogadaWcaaqaaiqadogagaacaaqa aiaaikdadaGcaaqaaiaadIhaaSqabaaaaOGaai4waiaaikdacqaHbp GCdaWgaaWcbaGaaiOkaaqabaGcciGGZbGaaiyAaiaac6gadaahaaWc beqaaiaaikdaaaGccaGGOaWaaSaaaeaacaWGRbGaeqiWdahabaGaaG OmaaaacqGHRaWkcaaIYaGaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGa aiykaiabgUcaRiaacIcacaaIXaGaeyOeI0IaaGOmaiabeg8aYnaaBa aaleaacaGGQaaabeaakiaacMcaciGGZbGaaiyAaiaac6gadaahaaWc beqaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaGGDb aaaa@608D@  (5.18)

В (5.17) и (5.18) введено обозначение

φ 2 = Ω 2 τ+ φ 2 (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaeuyQdC1aaSbaaSqaaiaaikdaaeqa aOGaeqiXdqNaey4kaSIaeqOXdO2aaSbaaSqaaiaaikdaaeqaaOGaai ikaiaaicdacaGGPaaaaa@4535@  (5.19)

Величина Ω 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdC1aaSbaaS qaaiaaikdaaeqaaaaa@3A0D@  определяется равенством, аналогичным равенству (8.12) из статьи [10]:

Ω2=ω2+[c11ρ*+2c02(12ρ*)]c~++{c21ρ*2+2[c12+(-1)kα12]ρ*(12ρ*)+3c03(1-2ρ*)2}c2+O(c~3)

Принимая во внимание выражения (3.4) и (5.2), (5.3), получаем, что при четных значениях k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@

Ω 2 = 1 2 x + 3x1 32 x 2 c ˜ + 3(23 x 2 18x+3) 2048 x 7/2 c ˜ 2 1 1536 [ 96(x1) x 2 c ˜ + + 121 x 2 200x+43 x 7/2 c ˜ 2 ] ρ * + 53 x 2 154x+41 512 x 7/2 c ˜ 2 ρ * 2 +O( c ˜ 3 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacqqHPoWvda WgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaWaaOaaaeaacaWG4baaleqaaaaakiabgUcaRmaalaaabaGaaG4mai aadIhacqGHsislcaaIXaaabaGaaG4maiaaikdacaWG4bWaaWbaaSqa beaacaaIYaaaaaaakiqadogagaacaiabgUcaRmaalaaabaGaaG4mai aacIcacaaIYaGaaG4maiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH sislcaaIXaGaaGioaiaadIhacqGHRaWkcaaIZaGaaiykaaqaaiaaik dacaaIWaGaaGinaiaaiIdacaWG4bWaaWbaaSqabeaacaaI3aGaai4l aiaaikdaaaaaaOGabm4yayaaiaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0YaaSaaaeaacaaIXaaabaGaaGymaiaaiwdacaaIZaGaaGOnaaaa caGGBbWaaSaaaeaacaaI5aGaaGOnaiaacIcacaWG4bGaeyOeI0IaaG ymaiaacMcaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiqadoga gaacaiabgUcaRaqaaiabgUcaRmaalaaabaGaaGymaiaaikdacaaIXa GaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaaIWaGa aGimaiaadIhacqGHRaWkcaaI0aGaaG4maaqaaiaadIhadaahaaWcbe qaaiaaiEdacaGGVaGaaGOmaaaaaaGcceWGJbGbaGaadaahaaWcbeqa aiaaikdaaaGccaGGDbGaeqyWdi3aaSbaaSqaaiaacQcaaeqaaOGaey 4kaSYaaSaaaeaacaaI1aGaaG4maiaadIhadaahaaWcbeqaaiaaikda aaGccqGHsislcaaIXaGaaGynaiaaisdacaWG4bGaey4kaSIaaGinai aaigdaaeaacaaI1aGaaGymaiaaikdacaWG4bWaaWbaaSqabeaacaaI 3aGaai4laiaaikdaaaaaaOGabm4yayaaiaWaaWbaaSqabeaacaaIYa aaaOGaeqyWdi3aa0baaSqaaiaacQcaaeaacaaIYaaaaOGaey4kaSIa am4taiaacIcaceWGJbGbaGaadaahaaWcbeqaaiaaiodaaaGccaGGPa Gaaiilaaaaaa@98EF@

где ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaaaa@3A31@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  корень уравнения (5.10). А при нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@ :

Ω 2 = 1 2 x + 3x1 32 x 2 c ˜ + 3(23 x 2 18x+3) 2048 x 7/2 c ˜ 2 1 1536 [ 96(x1) x 2 c ˜ + + 85 x 2 92x+43 x 7/2 c ˜ 2 ] ρ * + 29 x 2 82x+41 512 x 7/2 c ˜ 2 ρ * 2 +O( c ˜ 3 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaabbeaacqqHPoWvda WgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaWaaOaaaeaacaWG4baaleqaaaaakiabgUcaRmaalaaabaGaaG4mai aadIhacqGHsislcaaIXaaabaGaaG4maiaaikdacaWG4bWaaWbaaSqa beaacaaIYaaaaaaakiqadogagaacaiabgUcaRmaalaaabaGaaG4mai aacIcacaaIYaGaaG4maiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH sislcaaIXaGaaGioaiaadIhacqGHRaWkcaaIZaGaaiykaaqaaiaaik dacaaIWaGaaGinaiaaiIdacaWG4bWaaWbaaSqabeaacaaI3aGaai4l aiaaikdaaaaaaOGabm4yayaaiaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0YaaSaaaeaacaaIXaaabaGaaGymaiaaiwdacaaIZaGaaGOnaaaa caGGBbWaaSaaaeaacaaI5aGaaGOnaiaacIcacaWG4bGaeyOeI0IaaG ymaiaacMcaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiqadoga gaacaiabgUcaRaqaaiabgUcaRmaalaaabaGaaGioaiaaiwdacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGyoaiaaikdacaWG4bGa ey4kaSIaaGinaiaaiodaaeaacaWG4bWaaWbaaSqabeaacaaI3aGaai 4laiaaikdaaaaaaOGabm4yayaaiaWaaWbaaSqabeaacaaIYaaaaOGa aiyxaiabeg8aYnaaBaaaleaacaGGQaaabeaakiabgUcaRmaalaaaba GaaGOmaiaaiMdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia aGioaiaaikdacaWG4bGaey4kaSIaaGinaiaaigdaaeaacaaI1aGaaG ymaiaaikdacaWG4bWaaWbaaSqabeaacaaI3aGaai4laiaaikdaaaaa aOGabm4yayaaiaWaaWbaaSqabeaacaaIYaaaaOGaeqyWdi3aa0baaS qaaiaacQcaaeaacaaIYaaaaOGaey4kaSIaam4taiaacIcaceWGJbGb aGaadaahaaWcbeqaaiaaiodaaaGccaGGPaGaaiilaaaaaa@96D6@

где ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaaaa@3A31@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  корень уравнения (5.11).

Вычисляемая по формуле (5.18) координата ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyfaaa@393C@  изменяется (с периодом π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiWdahaaa@3954@  по φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaaikdaaeqaaaaa@3A3C@  ) между своими минимальным ς min MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGPbGaaiOBaaqabaaaaa@3C3A@  и максимальным ς max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3C3C@  значениями, которые ς MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdyfaaa@393C@  принимает соответственно при φ 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3C06@  и φ 2 =π/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdO2aaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaeqiWdaNaai4laiaaikdaaaa@3E78@ . Для четных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@

ς min =c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGPbGaaiOBaaqabaGccqGH9aqpcqGHsislcaWGJbaa aa@3F1F@ , ς max =c+c c ˜ 2 x (12 ρ * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpcqGHsislcaWGJbGa ey4kaSIaam4yamaalaaabaGabm4yayaaiaaabaGaaGOmamaakaaaba GaamiEaaWcbeaaaaGccaGGOaGaaGymaiabgkHiTiaaikdacqaHbpGC daWgaaWcbaGaaiOkaaqabaGccaGGPaaaaa@4A31@ ,    (5.20)

а при нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@

ς min =c+c c ˜ x ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGPbGaaiOBaaqabaGccqGH9aqpcqGHsislcaWGJbGa ey4kaSIaam4yamaalaaabaGabm4yayaaiaaabaWaaOaaaeaacaWG4b aaleqaaaaakiabeg8aYnaaBaaaleaacaGGQaaabeaaaaa@45AC@ , ς max =c+c c ˜ 2 x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpcqGHsislcaWGJbGa ey4kaSIaam4yamaalaaabaGabm4yayaaiaaabaGaaGOmamaakaaaba GaamiEaaWcbeaaaaaaaa@43C6@    (5.21)

В (5.20) и (5.21) ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaaaa@3A31@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  корни уравнений (5.10) и (5.11) соответственно.

В плоскости Oξη MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiabe67a4j abeE7aObaa@3BDA@  траектории (5.17) движущейся материальной точки при четных и нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  существенно отличаются. При четных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  (когда периодическое движение точки орбитально устойчиво) траектория является кривой четвертого порядка, имеющей форму восьмерки. Для нечетных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaaaa@3887@  (когда периодическое движение неустойчиво) траектория представляет собой параболу, которую материальная точка проходит дважды за период.

В качестве иллюстрации на рис. 2 и 3 показаны траектории материальной точки при конкретных значениях параметров: x=1/7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiabg2da9i aaigdacaGGVaGaaG4naaaa@3BC9@ , c ˜ =1/100 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4yayaaiaGaey ypa0JaaGymaiaac+cacaaIXaGaaGimaiaaicdaaaa@3D31@ . За единицу длины на этих рисунках принята длина полуоси c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yaaaa@387F@  поверхности (1.1).

 

Рис. 2

 

Рис. 3

 

На рис. 2, где k=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaiabg2da9i aaicdaaaa@3A47@ , имеем ρ * =0.0921670583... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaGyoaiaa ikdacaaIXaGaaGOnaiaaiEdacaaIWaGaaGynaiaaiIdacaaIZaGaai Olaiaac6cacaGGUaaaaa@4630@  и ξ=0.0263954062sin2 φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 JaaGimaiaac6cacaaIWaGaaGOmaiaaiAdacaaIZaGaaGyoaiaaiwda caaI0aGaaGimaiaaiAdacaaIYaGaci4CaiaacMgacaGGUbGaaGOmai abeA8aQnaaBaaaleaacaaIYaaabeaaaaa@496E@ , η=0.1110482283sin φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaiaac6cacaaIXaGaaGymaiaaigdacaaIWaGaaGinaiaaiIda caaIYaGaaGOmaiaaiIdacaaIZaGaci4CaiaacMgacaGGUbGaeqOXdO 2aaSbaaSqaaiaaikdaaeqaaaaa@4894@ , а на рис. 3, где k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaiabg2da9i aaigdaaaa@3A48@ , ρ * =0.0915908343... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiaacQcaaeqaaOGaeyypa0JaaGimaiaac6cacaaIWaGaaGyoaiaa igdacaaI1aGaaGyoaiaaicdacaaI4aGaaG4maiaaisdacaaIZaGaai Olaiaac6cacaGGUaaaaa@4631@  и ξ=0.0263127655cos2 φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 JaaGimaiaac6cacaaIWaGaaGOmaiaaiAdacaaIZaGaaGymaiaaikda caaI3aGaaGOnaiaaiwdacaaI1aGaci4yaiaac+gacaGGZbGaaGOmai abeA8aQnaaBaaaleaacaaIYaaabeaaaaa@4969@ , η=0.1111266502sin φ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaiaac6cacaaIXaGaaGymaiaaigdacaaIXaGaaGOmaiaaiAda caaI2aGaaGynaiaaicdacaaIYaGaci4CaiaacMgacaGGUbGaeqOXdO 2aaSbaaSqaaiaaikdaaeqaaaaa@488F@ . При этом в случае k=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaiabg2da9i aaicdaaaa@3A47@   1ς0.9892097546... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaaGymai abgsMiJkabek8awjabgsMiJkabgkHiTiaaicdacaGGUaGaaGyoaiaa iIdacaaI5aGaaGOmaiaaicdacaaI5aGaaG4naiaaiwdacaaI0aGaaG Onaiaac6cacaGGUaGaaiOlaaaa@4A3C@ , а в случае k=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Aaiabg2da9i aaicdaaaa@3A47@ : 0.9975767342...ς0.9867712434... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaaGimai aac6cacaaI5aGaaGyoaiaaiEdacaaI1aGaaG4naiaaiAdacaaI3aGa aG4maiaaisdacaaIYaGaaiOlaiaac6cacaGGUaGaeyizImQaeqOWdy LaeyizImQaeyOeI0IaaGimaiaac6cacaaI5aGaaGioaiaaiAdacaaI 3aGaaG4naiaaigdacaaIYaGaaGinaiaaiodacaaI0aGaaiOlaiaac6 cacaGGUaaaaa@547A@

Исследование выполнено за счет гранта Российского научного фонда MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=zriaaa@3A1D@  24-11-00162, https://rscf.ru/project/24-11-00162/ в Московском авиационном институте (Национальном исследовательском университете).

×

About the authors

A. P. Markeev

Moscow Aviation Institute (NRU)

Author for correspondence.
Email: anat-markeev@mail.ru
Russian Federation, Moscow

References

  1. Arnol’d V.I., Kozlov V.V., Neishtadt A.I. Mathematical Aspects of Classical and Celestial Mechanics. Encyclopedia Math. Sci. Vol. 3. Berlin: Springer, 2006. 505 p.
  2. Moser J.K. Lectures on Hamiltonian systems // Mem. Amer. Math. Soc., no. 81, Providence, R.I.: AMS, 1968.
  3. Birkhoff G.D. Dynamical Systems. AMS Coll. Publ., Vol. 9, Providence, R.I.: AMS, 1966.
  4. Giacaglia G.E.O. Perturbation Methods in Non-Linear Systems. N.Y.: Springer, 1972. 369 p.
  5. Malkin I.G. Some Problems in the Theory of Nonlinear Oscillations. In 2 Vols., Germantown, Md.:US Atom. Energy Commis., Techn. Inform. Serv., 1959.
  6. Gantmacher F.R. Lectures on Analytical Mechanics. Moscow: Fizmatgiz, 1960. 296 p. (in Russian)
  7. Markeev A.P. Theoretical Mechanics. Moscow;Izhevsk: R&C Dyn., 2007. 592 p. (in Russian)
  8. Markeev A.P. On the problem of nonlinear oscillations of a conservative system in the absence of resonance // JAMM, 2024, vol. 88, no. 3, pp. 347–358.
  9. Pöschel J. Integrability of Hamiltonian systems on Cantor sets // Commun. Pure&Appl. Math., 1982, vol. 35, no. 5, pp. 653–696.
  10. Markeev A.P. On nonlinear oscillations of a triaxial ellipsoid on a smooth horizontal plane // Mech. of Solids, 2022, vol. 57, no. 8, pp. 1805–1818.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (75KB)
3. Fig. 2

Download (102KB)
4. Fig. 3

Download (55KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».