Analytical investigation of rotational autofrettage of hollow cylinders based on unified yield criterion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The strengthening of a hollow cylindrical tube by using rotational autofrettage is investigated. The problem statement is based on the theory of infinitesimal elastic-plastic deformations, the unified yield criterion, the associated flow rule and the law of linear isotropic hardening. During unloading, the cylinder material can exhibit the Bauschinger effect. Exact analytical solutions are obtained for the stages of loading, unloading and operation. It is established that the material parameter reflecting the influence of the intermediate principal stress has a significant effect on the stress-strain state in the cylinder and the choice of optimal autofrettage parameters.

About the authors

A. N. Prokudin

Institute of Machinery and Metallurgy of the Khabarovsk Federal Research Center FEB RAS

Author for correspondence.
Email: sunbeam_85@mail.ru
Komsomolsk-na-Amure, Russia

A. A. Burenin

Institute of Machinery and Metallurgy of the Khabarovsk Federal Research Center FEB RAS

Email: burenin@iacp.dvo.ru
Komsomolsk-na-Amure, Russia

References

  1. Shufen R., Dixit U.S. A Review of Theoretical and Experimental Research on Various Autofrettage Processes // J. Press. Vessel Technol., 2018, vol. 140, no. 5, 050802. https://doi.org/10.1115/1.4039206. EDN: YIMATJ
  2. Saint-Vénant A.J.C.B. Sur l’intensité desforces capables de déformer, avec continuité, des blocs ductiles, cylindriques, pleins ou évidés, et placés dans diverses circonstanc // Comptes Rendues Académie Sci., 1872, vol. 74, pp. 1009–1015.
  3. Jacob L. La Résistance et L’équilibre Élastique des Tubes Frettés // Meml. Artillerie Nav., 1907, vol. 1, pp. 43–155.
  4. Kendall D.P. A Short History of High Pressure Technology From Bridgman to Division 3 // J. Press. Vessel Technol., 2000, vol. 122, no. 3, pp. 229–233. https://doi.org/10.1115/1.556178.
  5. Davidson T.E., Barton C.S., Reiner A.N., Kendall D.P. New approach to the autofrettage of high-strength cylinders // Exp. Mech., 1962, vol. 2, no. 2, pp. 33–40. https://doi.org/10.1007/BF02325691. EDN: HRXQOU
  6. Zhan R., Tao C., Han L., Huang Y., Han D. The Residual Stress and Its Influence on the Fatigue Strength Induced by Explosive Autofrettage // Explos. Shock Waves., 2005, vol. 25, no. 3, pp. 239–243. https://doi.org/10.11883/1001-1455(2005)03-0239-05.
  7. Shufen R., Mahanta N., Dixit U.S. Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder // J. Press. Vessel Technol., 2019, vol. 141, no. 5, 051403. https://doi.org/10.1115/1.4044119.
  8. Zare H.R., Darijani H. A novel autofrettage method for strengthening and design of thick-walled cylinders // Mater. Des., 2016, vol. 105, pp. 366–374. https://doi.org/10.1016/j.matdes.2016.05.062.
  9. Zare H.R., Darijani H. Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage // Int. J. Mech. Sci. 2017., vol. 124–125, pp. 1–8. https://doi.org/10.1016/j.ijmecsci.2017.02.015.
  10. Kamal S.M., Perl M., Bharali D. Generalized plane strain study of rotational autofrettage of thick-walled cylinders-Part I: Theoretical analysis // J. Press. Vessel Technol., 2019, vol. 141, no. 5, 051201. https://doi.org/10.1115/1.4043591.
  11. Kamal S.M., Perl M. Generalized plane strain study of rotational autofrettage of thick-walled cylinders-Part II: Numerical evaluation // J. Press. Vessel Technol., 2019, vol. 141, no. 5, 051202. https://doi.org/10.1115/1.4044173.
  12. Shufen R., Dixit U.S. Effect of length in rotational autofrettage of long cylinders with free ends // Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, vol. 236, no. 6, pp. 2981–2994. https://doi.org/10.1177/09544062211034205. EDN: FQCEGR
  13. Kamal S.M., Aziz F. Estimation of the Stresses in Rotational Autofrettage of Thick-Walled Pressure Vessels Using von Mises Yield Criterion // Proceedings of ASME 2021 Pressure Vessels & Piping Conference. Volume 2: Computer Technology and Bolted Joints; Design and Analysis. ASME Digital Collection, 2021, PVP2021-61888. https://doi.org/10.1115/PVP2021-61888.
  14. Mack W. Rotating elastic-plastic tube with free ends // Int. J. Solids Struct., 1991, vol. 27, no. 11, pp. 1461–1476. https://doi.org/10.1016/0020-7683(91)90042-E.
  15. Eraslan A.N., Mack W. A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts // Forsch. Im Ingenieurwesen, 2005, vol. 69, no. 2, pp. 65–75. https://doi.org/10.1007/s10010-004-0138-7. EDN: NNMVIY
  16. Eraslan A.N., Akis T. The Stress Response of Partially Plastic Rotating FGM Hollow Shafts: Analytical Treatment for Axially Constrained Ends // Mech. Based Des. Struct. Mach., 2006, vol. 34, no. 3, pp. 241–260. https://doi.org/10.1080/15397730600779285.
  17. Hu Z., Parker A.P. Swage autofrettage analysis — Current status and future prospects // Int. J. Press. Vessels Pip., 2019, vol. 171, pp. 233–241. https://doi.org/10.1016/j.ijpvp.2019.03.007.
  18. Molaie M., Darijani H., Bahreman M., Hosseini S.M. Autofrettage of nonlinear strain-hardening cylinders using the proposed analytical solution for stresses // Int. J. Mech. Sci., 2018, vol. 141, pp. 450–460. https://doi.org/10.1016/j.ijmecsci.2018.04.019.
  19. Rynkovskaya M., Alexandrov S., Lang L. A Theory of Autofrettage for Open-Ended, Polar Orthotropic Cylinders // Symmetry, 2019, vol. 11, no. 2, 280. https://doi.org/10.3390/sym11020280. EDN: FHLLRW
  20. Seifi R. Maximizing working pressure of autofrettaged three layer compound cylinders with considering Bauschinger effect and reverse yielding // Meccanica, 2018, vol. 53, no. 10, pp. 2485–2501. https://doi.org/10.1007/s11012-018-0834-2. EDN: HYVFRX
  21. Hu Z., Parker A.P. Implementation and validation of true material constitutive model for accurate modeling of thick-walled cylinder swage autofrettage // Int. J. Press. Vessels Pip., 2021, vol. 191, 104378. https://doi.org/10.1016/j.ijpvp.2021.104378. EDN: MSVATL
  22. Hu Z., Parker A.P. Use of a True Material Constitutive Model for Stress Analysis of a Swage Autofrettaged Tube including ASME Code Comparison // J. Press. Vessel Technol., 2022, vol. 144, no. 2, 024502. https://doi.org/10.1115/1.4051688. EDN: KDYNYE
  23. Zhang Z., Yang G., Wang X., Chen Q. Residual Stress Calculation of Hydraulic Autofrettage Thick-Walled Tube Based on a Revised Kinematic Hardening Model // J. Press. Vessel Technol., 2025, vol. 147, no. 1, 011501. https://doi.org/10.1115/1.4067261. EDN: PVTXCJ
  24. Prokudin A.N. Influence of variable Young’s modulus on residual stresses induced by rotational autofrettage of a tube with fixed ends // PNRPU Mechanics Bulletin, 2023, no. 6, pp. 91–103. https://doi.org/10.15593/perm.mech/2023.6.09
  25. Akhavanfar S., Darijani H., Darijani F. Constitutive modeling of high strength steels; application to the analytically strengthening of thick-walled tubes using the rotational autofrettage // Eng. Struct., 2023, vol. 278, 115516. https://doi.org/10.1016/j.engstruct.2022.115516. EDN: DDWTQS
  26. Shufen R., Singh N.P., Dixit U.S. Thermally Assisted Rotational Autofrettage of Long Cylinders With Free Ends // J. Press. Vessel Technol., 2023, vol. 145, no. 5, 051303. https://doi.org/10.1115/1.4063095. EDN: FNFXDX
  27. Aziz F., Kamal S.M., Dixit U.S. Enhancing Fatigue Life of Thick-Walled Cylinders through a Hybrid Rotational-Swage Autofrettage-Induced Residual Stresses // J. Mater. Eng. Perform., 2024. https://doi.org/10.1007/s11665-023-09090-y. EDN: QTTUIK
  28. Ishlinskij A.Yu. The hypothesis of the strength of the deformation // Scientific notes of MSU, 1940, no. 46, pp. 104–114.
  29. Ivlev D.D., Bykovcev G.I. Theory of hardening plastic body. (Teoriya uprochnyayushchegosya plasticheskogo tela) Moscow: Nauka, 1971. 232 p. (in Russian)
  30. Prokudin A.N. Exact elastoplastic analysis of a rotating hollow cylinder made of power-law hardening material // Mater. Phys. Mech., 2023, vol. 51, no. 2, pp. 96–111. https://doi.org/10.18149/MPM.5122023_9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).