Quantifier Alternation in First-Order Formulas with Infinite Spectra
- Autores: Zhukovskii M.E.1
-
Afiliações:
- Derzhavin Tambov State University
- Edição: Volume 53, Nº 4 (2017)
- Páginas: 391-403
- Seção: Large Systems
- URL: https://journal-vniispk.ru/0032-9460/article/view/166466
- DOI: https://doi.org/10.1134/S003294601704007X
- ID: 166466
Citar
Resumo
The spectrum of a first-order formula is the set of numbers α such that for a random graph in a binomial model where the edge probability is a power function of the number of graph vertices with exponent −α the truth probability of this formula does not tend to either zero or one. In 1990 J. Spenser proved that there exists a first-order formula with an infinite spectrum. We have proved that the minimum quantifier depth of a first-order formula with an infinite spectrum is either 4 or 5. In the present paper we find a wide class of first-order formulas of depth 4 with finite spectra and also prove that the minimum quantifier alternation number for a first-order formula with an infinite spectrum is 3.
Sobre autores
M. Zhukovskii
Derzhavin Tambov State University
Autor responsável pela correspondência
Email: zhukmax@gmail.com
Rússia, Tambov
Arquivos suplementares
