Clique Numbers of Random Subgraphs of Some Distance Graphs
- 作者: Gusev A.S.1
-
隶属关系:
- Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
- 期: 卷 54, 编号 2 (2018)
- 页面: 165-175
- 栏目: Large Systems
- URL: https://journal-vniispk.ru/0032-9460/article/view/166505
- DOI: https://doi.org/10.1134/S0032946018020059
- ID: 166505
如何引用文章
详细
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
\(V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} \)![]()
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.作者简介
A. Gusev
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
编辑信件的主要联系方式.
Email: aretalogus@inbox.ru
俄罗斯联邦, Moscow
补充文件
