Infinite Spectra of First-Order Properties for Random Hypergraphs
- Autores: Popova S.N.1
-
Afiliações:
- Moscow Institute of Physics and Technology (State University)
- Edição: Volume 54, Nº 3 (2018)
- Páginas: 281-289
- Seção: Large Systems
- URL: https://journal-vniispk.ru/0032-9460/article/view/166542
- DOI: https://doi.org/10.1134/S0032946018030079
- ID: 166542
Citar
Resumo
We study the asymptotic behavior of probabilities of first-order properties for random uniform hypergraphs. In 1990, J. Spencer introduced the notion of a spectrum for graph properties and proved the existence of a first-order property with an infinite spectrum. In this paper we give a definition of a spectrum for properties of uniform hypergraphs and establish an almost tight bound for the minimum quantifier depth of a first-order formula with infinite spectrum.
Sobre autores
S. Popova
Moscow Institute of Physics and Technology (State University)
Autor responsável pela correspondência
Email: popovaclaire@mail.ru
Rússia, Moscow
Arquivos suplementares
