


Vol 52, No 4 (2016)
- Year: 2016
- Articles: 6
- URL: https://journal-vniispk.ru/0032-9460/issue/view/10132
Information Theory
On some extremal problems for mutual information and entropy
Abstract
The problem of determining the maximum mutual information I(X; Y) and minimum entropy H(X, Y) of a pair of discrete random variables X and Y is considered under the condition that the probability distribution of X is fixed and the error probability Pr{Y ≠ X} takes a given value ε, 0 ≤ ε ≤ 1. Precise values for these quantities are found, which in several cases allows us to obtain explicit formulas for both the maximum information and minimum entropy in terms of the probability distribution of X and the parameter ε.



List decoding for a multiple access hyperchannel
Abstract
We obtain bounds on the rate of (optimal) list-decoding codes with a fixed list size L ≥ 1 for a q-ary multiple access hyperchannel (MAHC) with s ≥ 2 inputs and one output. By definition, an output signal of this channel is the set of symbols of a q-ary alphabet that occur in at least one of the s input signals. For example, in the case of a binary MAHC, where q = 2, an output signal takes values in the ternary alphabet {0, 1, {0, 1}}; namely, it equals 0 (1) if all the s input signals are 0 (1) and equals {0, 1} otherwise. Previously, upper and lower bounds on the code rate for a q-ary MAHC were studied for L ≥ 1 and q = 2, and also for the nonbinary case q ≥ 3 for L = 1 only, i.e., for so-called frameproof codes. Constructing upper and lower bounds on the rate for the general case of L ≥ 1 and q ≥ 2 in the present paper is based on a substantial development of methods that we designed earlier for the classical binary disjunctive multiple access channel.



Methods of Signal Processing
On risk concentration for convex combinations of linear estimators
Abstract
We consider the estimation problem for an unknown vector β ∈ Rp in a linear model Y = Xβ + σξ, where ξ ∈ Rn is a standard discrete white Gaussian noise and X is a known n × p matrix with n ≥ p. It is assumed that p is large and X is an ill-conditioned matrix. To estimate β in this situation, we use a family of spectral regularizations of the maximum likelihood method βα(Y) = Hα(XTX) β◦(Y), α ∈ R+, where β◦(Y) is the maximum likelihood estimate for β and {Hα(·): R+ → [0, 1], α ∈ R+} is a given ordered family of functions indexed by a regularization parameter α. The final estimate for β is constructed as a convex combination (in α) of the estimates βα(Y) with weights chosen based on the observations Y. We present inequalities for large deviations of the norm of the prediction error of this method.



Derivation of fast algorithms via binary filtering of signals
Abstract
We present a new way to derive a fast algorithm realizing the discrete Walsh transform (DWT), which can be applied both in the traditional form, i.e., to a one-dimensional numerical array, and to a multi-dimensional array, as well as for a signal of a continuous argument in the form of a function or an image. The algorithm is presented as iterated application of the primitive discrete Haar transform (DHT) over two variables. Two standard ways of arranging the results of this simplest transform lead to the fast DWT in the Hadamard or Paley enumeration in the case of splitting the signal into equal parts. Application of the algorithm to analogous shifts of the periodic source signal results in longitudinal filtering of a signal via decomposing it into a sum of simpler signals. In an incomplete version of the last algorithm, we come to an analog of the fast DHT.



Large Systems
On chromatic numbers of close-to-Kneser distance graphs
Abstract
We study a family of distance graphs whose structure is close to that of Kneser graphs. We give new lower and upper bounds on the chromatic numbers of such graphs and consider the question of their interrelation. We also describe the structure of some important independence sets for this family of graphs and explicitly compute their cardinalities.



Information Protection
A triangular class of skew maximum-period polynomials
Abstract
Skew maximum-period polynomials (MP polynomials) are a kind of pseudorandom sequence generators with good cryptographic properties and efficient implementation on modern processors using parallelism technologies. There are two known classes of MP polynomials, presented in various papers (actually coinciding, as will be shown below), obtained constructively. Here we describe a wider class of skew MP polynomials.


