On the symmetry group of the Mollard code


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the symmetry group of a binary perfect Mollard code M(C,D) of length tm + t + m containing as its subcodes the codes C1 and D2 formed from perfect codes C and D of lengths t and m, respectively, by adding an appropriate number of zeros. For the Mollard codes, we generalize the result obtained in [1] for the symmetry group of Vasil’ev codes; namely, we describe the stabilizer

\(Sta{b_{{D^2}}}\)
Sym(M(C,D)) of the subcode D2 in the symmetry group of the code M(C,D) (with the trivial function). Thus we obtain a new lower bound on the order of the symmetry group of the Mollard code. A similar result is established for the automorphism group of Steiner triple systems obtained by the Mollard construction but not necessarily associated with perfect codes. To obtain this result, we essentially use the notions of “linearity” of coordinate positions (points) of a nonlinear perfect code and a nonprojective Steiner triple system.

作者简介

I. Mogilnykh

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: ivmog@math.nsc.ru
俄罗斯联邦, Novosibirsk

F. Solov’eva

Sobolev Institute of Mathematics

Email: ivmog@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2016