On the symmetry group of the Mollard code
- 作者: Mogilnykh I.Y.1, Solov’eva F.I.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 52, 编号 3 (2016)
- 页面: 265-275
- 栏目: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166307
- DOI: https://doi.org/10.1134/S0032946016030042
- ID: 166307
如何引用文章
详细
We study the symmetry group of a binary perfect Mollard code M(C,D) of length tm + t + m containing as its subcodes the codes C1 and D2 formed from perfect codes C and D of lengths t and m, respectively, by adding an appropriate number of zeros. For the Mollard codes, we generalize the result obtained in [1] for the symmetry group of Vasil’ev codes; namely, we describe the stabilizer
\(Sta{b_{{D^2}}}\)![]()
Sym(M(C,D)) of the subcode D2 in the symmetry group of the code M(C,D) (with the trivial function). Thus we obtain a new lower bound on the order of the symmetry group of the Mollard code. A similar result is established for the automorphism group of Steiner triple systems obtained by the Mollard construction but not necessarily associated with perfect codes. To obtain this result, we essentially use the notions of “linearity” of coordinate positions (points) of a nonlinear perfect code and a nonprojective Steiner triple system.作者简介
I. Mogilnykh
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: ivmog@math.nsc.ru
俄罗斯联邦, Novosibirsk
F. Solov’eva
Sobolev Institute of Mathematics
Email: ivmog@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
