On the symmetry group of the Mollard code


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the symmetry group of a binary perfect Mollard code M(C,D) of length tm + t + m containing as its subcodes the codes C1 and D2 formed from perfect codes C and D of lengths t and m, respectively, by adding an appropriate number of zeros. For the Mollard codes, we generalize the result obtained in [1] for the symmetry group of Vasil’ev codes; namely, we describe the stabilizer

\(Sta{b_{{D^2}}}\)
Sym(M(C,D)) of the subcode D2 in the symmetry group of the code M(C,D) (with the trivial function). Thus we obtain a new lower bound on the order of the symmetry group of the Mollard code. A similar result is established for the automorphism group of Steiner triple systems obtained by the Mollard construction but not necessarily associated with perfect codes. To obtain this result, we essentially use the notions of “linearity” of coordinate positions (points) of a nonlinear perfect code and a nonprojective Steiner triple system.

Sobre autores

I. Mogilnykh

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: ivmog@math.nsc.ru
Rússia, Novosibirsk

F. Solov’eva

Sobolev Institute of Mathematics

Email: ivmog@math.nsc.ru
Rússia, Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2016