Upper bound on the minimum distance of LDPC codes over GF(q) based on counting the number of syndromes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). A comparison with the lower bound for LDPC codes over GF(q), upper bound for the codes over GF(q), and the shortening upper bound for LDPC codes is made. The new bound is shown to lie under the Gilbert–Varshamov bound at high rates.

Sobre autores

A. Frolov

Kharkevich Institute for Information Transmission Problems

Autor responsável pela correspondência
Email: alexey.frolov@iitp.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2016