On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed–Solomon Codes


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract—In the projective plane PG(2, q), a subset S of a conic C is said to be almost complete if it can be extended to a larger arc in PG(2, q) only by the points of C \ S and by the nucleus of C when q is even. We obtain new upper bounds on the smallest size t(q) of an almost complete subset of a conic, in particular,

\(t(q) < \sqrt {q(3lnq + lnlnq + ln3)} + \sqrt {\frac{q}{{3\ln q}}} + 4 \sim \sqrt {3q\ln q} ,t(q) < 1.835\sqrt {q\ln q.} \)
The new bounds are used to extend the set of pairs (N, q) for which it is proved that every normal rational curve in the projective space PG(N, q) is a complete (q+1)-arc, or equivalently, that no [q+1,N+1, q−N+1]q generalized doubly-extended Reed–Solomon code can be extended to a [q + 2,N + 1, qN + 2]q maximum distance separable code.

Авторлар туралы

D. Bartoli

Department of Mathematics and Computer Sciences

Хат алмасуға жауапты Автор.
Email: daniele.bartoli@unipg.it
Италия, Perugia

A. Davydov

Kharkevich Institute for Information Transmission Problems

Email: daniele.bartoli@unipg.it
Ресей, Moscow

S. Marcugini

Department of Mathematics and Computer Sciences

Email: daniele.bartoli@unipg.it
Италия, Perugia

F. Pambianco

Department of Mathematics and Computer Sciences

Email: daniele.bartoli@unipg.it
Италия, Perugia

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2018