Information-Theoretic method for classification of texts
- 作者: Ryabko B.Y.1,2, Gus’kov A.E.1,3, Selivanova I.V.2,3
-
隶属关系:
- Institute of Computational Technologies
- Novosibirsk State University
- Russian National Public Library for Science and Technnology
- 期: 卷 53, 编号 3 (2017)
- 页面: 294-304
- 栏目: Source Coding
- URL: https://journal-vniispk.ru/0032-9460/article/view/166433
- DOI: https://doi.org/10.1134/S0032946017030115
- ID: 166433
如何引用文章
详细
We consider a method for automatic (i.e., unmanned) text classification based on methods of universal source coding (or “data compression”). We show that under certain restrictions the proposed method is consistent, i.e., the classification error tends to zero with increasing text lengths. As an example of practical use of the method we consider the classification problem for scientific texts (research papers, books, etc.). The proposed method is experimentally shown to be highly efficient.
作者简介
B. Ryabko
Institute of Computational Technologies; Novosibirsk State University
编辑信件的主要联系方式.
Email: boris@ryabko.net
俄罗斯联邦, Novosibirsk; Novosibirsk
A. Gus’kov
Institute of Computational Technologies; Russian National Public Library for Science and Technnology
Email: boris@ryabko.net
俄罗斯联邦, Novosibirsk; Novosibirsk
I. Selivanova
Novosibirsk State University; Russian National Public Library for Science and Technnology
Email: boris@ryabko.net
俄罗斯联邦, Novosibirsk; Novosibirsk
补充文件
