Noise Level Estimation in High-Dimensional Linear Models
- Авторы: Golubev G.K.1,2, Krymova E.A.1,3
-
Учреждения:
- Kharkevich Institute for Information Transmission Problems
- CNRS
- Duisburg-Essen University
- Выпуск: Том 54, № 4 (2018)
- Страницы: 351-371
- Раздел: Methods of Signal Processing
- URL: https://journal-vniispk.ru/0032-9460/article/view/166562
- DOI: https://doi.org/10.1134/S003294601804004X
- ID: 166562
Цитировать
Аннотация
We consider the problem of estimating the noise level σ2 in a Gaussian linear model Y = Xβ+σξ, where ξ ∈ ℝn is a standard discrete white Gaussian noise and β ∈ ℝp an unknown nuisance vector. It is assumed that X is a known ill-conditioned n × p matrix with n ≥ p and with large dimension p. In this situation the vector β is estimated with the help of spectral regularization of the maximum likelihood estimate, and the noise level estimate is computed with the help of adaptive (i.e., data-driven) normalization of the quadratic prediction error. For this estimate, we compute its concentration rate around the pseudo-estimate ||Y − Xβ||2/n.
Об авторах
G. Golubev
Kharkevich Institute for Information Transmission Problems; CNRS
Автор, ответственный за переписку.
Email: golubev.yuri@gmail.com
Россия, Moscow; Marseille
E. Krymova
Kharkevich Institute for Information Transmission Problems; Duisburg-Essen University
Email: golubev.yuri@gmail.com
Россия, Moscow; Duisburg
Дополнительные файлы
