Noise Level Estimation in High-Dimensional Linear Models


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the problem of estimating the noise level σ2 in a Gaussian linear model Y = +σξ, where ξ ∈ ℝn is a standard discrete white Gaussian noise and β ∈ ℝp an unknown nuisance vector. It is assumed that X is a known ill-conditioned n × p matrix with np and with large dimension p. In this situation the vector β is estimated with the help of spectral regularization of the maximum likelihood estimate, and the noise level estimate is computed with the help of adaptive (i.e., data-driven) normalization of the quadratic prediction error. For this estimate, we compute its concentration rate around the pseudo-estimate ||Y||2/n.

作者简介

G. Golubev

Kharkevich Institute for Information Transmission Problems; CNRS

编辑信件的主要联系方式.
Email: golubev.yuri@gmail.com
俄罗斯联邦, Moscow; Marseille

E. Krymova

Kharkevich Institute for Information Transmission Problems; Duisburg-Essen University

Email: golubev.yuri@gmail.com
俄罗斯联邦, Moscow; Duisburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018