Noise Level Estimation in High-Dimensional Linear Models


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the problem of estimating the noise level σ2 in a Gaussian linear model Y = +σξ, where ξ ∈ ℝn is a standard discrete white Gaussian noise and β ∈ ℝp an unknown nuisance vector. It is assumed that X is a known ill-conditioned n × p matrix with np and with large dimension p. In this situation the vector β is estimated with the help of spectral regularization of the maximum likelihood estimate, and the noise level estimate is computed with the help of adaptive (i.e., data-driven) normalization of the quadratic prediction error. For this estimate, we compute its concentration rate around the pseudo-estimate ||Y||2/n.

Sobre autores

G. Golubev

Kharkevich Institute for Information Transmission Problems; CNRS

Autor responsável pela correspondência
Email: golubev.yuri@gmail.com
Rússia, Moscow; Marseille

E. Krymova

Kharkevich Institute for Information Transmission Problems; Duisburg-Essen University

Email: golubev.yuri@gmail.com
Rússia, Moscow; Duisburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018