Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 54, № 2 (2018)

Coding Theory

On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed–Solomon Codes

Bartoli D., Davydov A., Marcugini S., Pambianco F.

Аннотация

Abstract—In the projective plane PG(2, q), a subset S of a conic C is said to be almost complete if it can be extended to a larger arc in PG(2, q) only by the points of C \ S and by the nucleus of C when q is even. We obtain new upper bounds on the smallest size t(q) of an almost complete subset of a conic, in particular,

\(t(q) < \sqrt {q(3lnq + lnlnq + ln3)} + \sqrt {\frac{q}{{3\ln q}}} + 4 \sim \sqrt {3q\ln q} ,t(q) < 1.835\sqrt {q\ln q.} \)
The new bounds are used to extend the set of pairs (N, q) for which it is proved that every normal rational curve in the projective space PG(N, q) is a complete (q+1)-arc, or equivalently, that no [q+1,N+1, q−N+1]q generalized doubly-extended Reed–Solomon code can be extended to a [q + 2,N + 1, qN + 2]q maximum distance separable code.

Problems of Information Transmission. 2018;54(2):101-115
pages 101-115 views

Compositional Restricted Multiple Access Channel

Egorova E., Potapova V.

Аннотация

We introduce the notion of a q-ary s-compositional code and prove that the rate, R, of the best such code satisfies for large s the asymptotic inequalities

\((q - 1)\frac{{{{\log }_q}s}}{{4s}} \lesssim 2(q - 1)\frac{{{{\log }_q}s}}{{4s}}\)
.

Problems of Information Transmission. 2018;54(2):116-123
pages 116-123 views

Methods of Signal Processing

On Discrimination between Classes of Distribution Tails

Rodionov I.

Аннотация

We propose a test to distinguish between two classes of distribution tails using only higher order statistics of a sample and prove its consistency. We do not assume the corresponding distribution functions to belong to any maximum domain of attraction.

Problems of Information Transmission. 2018;54(2):124-138
pages 124-138 views

Large Systems

Improved Frankl–Rödl Theorem and Some of Its Geometric Consequences

Sagdeev A.

Аннотация

We substantially improve a presently known explicit exponentially growing lower bound on the chromatic number of a Euclidean space with forbidden equilateral triangle. Furthermore, we improve an exponentially growing lower bound on the chromatic number of distance graphs with large girth. These refinements are obtained by improving known upper bounds on the product of cardinalities of two families of homogeneous subsets with one forbidden cross-intersection.

Problems of Information Transmission. 2018;54(2):139-164
pages 139-164 views

Clique Numbers of Random Subgraphs of Some Distance Graphs

Gusev A.

Аннотация

We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:

\(V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} \)
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.

Problems of Information Transmission. 2018;54(2):165-175
pages 165-175 views

Communication Network Theory

Maximum Remaining Service Time in Infinite-Server Queues

Lebedev A.

Аннотация

We study the maximum remaining service time in infinite-server queues of type M|G|∞ (at a given time and in a stationary regime). The following cases for the arrival flow rate are considered: (1) time-independent, (2) given by a function of time, (3) given by a random process. As examples of service time distributions, we consider exponential, hyperexponential, Pareto, and uniform distributions. In the case of a constant rate, we study effects that arise when the average service time is infinite (for power-law distribution tails). We find the extremal index of the sequence of maximum remaining service times. The results are extended to queues of type MX|G|∞, including those with dependent service times within a batch.

Problems of Information Transmission. 2018;54(2):176-190
pages 176-190 views

Information-Theoretic Approach to Estimating the Capacity of Distributed Memory Systems

Ryabko B.

Аннотация

Systems with cash memory (or more generally, with distributed memory) are very widely used in information technologies. Such are content delivery networks (CDN) of various types, which deliver digital movies, books, and similar content; peer-to-peer (P2P) networks, where millions of members exchange various information; and many other systems and devices of this kind. We introduce the notions of capacity and entropy efficiency for distributed memory systems, propose methods for estimating these quantities, and give an example of their application.

Problems of Information Transmission. 2018;54(2):191-198
pages 191-198 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».