Generalized Preparata codes and 2-resolvable Steiner quadruple systems
- 作者: Zinoviev V.A.1, Zinoviev D.V.1
-
隶属关系:
- Kharkevich Institute for Information Transmission Problems
- 期: 卷 52, 编号 2 (2016)
- 页面: 114-133
- 栏目: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166274
- DOI: https://doi.org/10.1134/S0032946016020022
- ID: 166274
如何引用文章
详细
We consider generalized Preparata codes with a noncommutative group operation. These codes are shown to induce new partitions of Hamming codes into cosets of these Preparata codes. The constructed partitions induce 2-resolvable Steiner quadruple systems S(n, 4, 3) (i.e., systems S(n, 4, 3) that can be partitioned into disjoint Steiner systems S(n, 4, 2)). The obtained partitions of systems S(n, 4, 3) into systems S(n, 4, 2) are not equivalent to such partitions previously known.
作者简介
V. Zinoviev
Kharkevich Institute for Information Transmission Problems
编辑信件的主要联系方式.
Email: zinov@iitp.ru
俄罗斯联邦, Moscow
D. Zinoviev
Kharkevich Institute for Information Transmission Problems
Email: zinov@iitp.ru
俄罗斯联邦, Moscow
补充文件
