Generalized Preparata codes and 2-resolvable Steiner quadruple systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider generalized Preparata codes with a noncommutative group operation. These codes are shown to induce new partitions of Hamming codes into cosets of these Preparata codes. The constructed partitions induce 2-resolvable Steiner quadruple systems S(n, 4, 3) (i.e., systems S(n, 4, 3) that can be partitioned into disjoint Steiner systems S(n, 4, 2)). The obtained partitions of systems S(n, 4, 3) into systems S(n, 4, 2) are not equivalent to such partitions previously known.

作者简介

V. Zinoviev

Kharkevich Institute for Information Transmission Problems

编辑信件的主要联系方式.
Email: zinov@iitp.ru
俄罗斯联邦, Moscow

D. Zinoviev

Kharkevich Institute for Information Transmission Problems

Email: zinov@iitp.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2016