Generalized Preparata codes and 2-resolvable Steiner quadruple systems
- Авторлар: Zinoviev V.A.1, Zinoviev D.V.1
-
Мекемелер:
- Kharkevich Institute for Information Transmission Problems
- Шығарылым: Том 52, № 2 (2016)
- Беттер: 114-133
- Бөлім: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166274
- DOI: https://doi.org/10.1134/S0032946016020022
- ID: 166274
Дәйексөз келтіру
Аннотация
We consider generalized Preparata codes with a noncommutative group operation. These codes are shown to induce new partitions of Hamming codes into cosets of these Preparata codes. The constructed partitions induce 2-resolvable Steiner quadruple systems S(n, 4, 3) (i.e., systems S(n, 4, 3) that can be partitioned into disjoint Steiner systems S(n, 4, 2)). The obtained partitions of systems S(n, 4, 3) into systems S(n, 4, 2) are not equivalent to such partitions previously known.
Авторлар туралы
V. Zinoviev
Kharkevich Institute for Information Transmission Problems
Хат алмасуға жауапты Автор.
Email: zinov@iitp.ru
Ресей, Moscow
D. Zinoviev
Kharkevich Institute for Information Transmission Problems
Email: zinov@iitp.ru
Ресей, Moscow
Қосымша файлдар
