On the real complexity of a complex DFT
- 作者: Sergeev I.S.1
-
隶属关系:
- Federal State Unitary Enterprise “Kvant Scientific Research Institute,”
- 期: 卷 53, 编号 3 (2017)
- 页面: 284-293
- 栏目: Large Systems
- URL: https://journal-vniispk.ru/0032-9460/article/view/166429
- DOI: https://doi.org/10.1134/S0032946017030103
- ID: 166429
如何引用文章
详细
We present a method to construct a theoretically fast algorithm for computing the discrete Fourier transform (DFT) of order N = 2n. We show that the DFT of a complex vector of length N is performed with complexity of 3.76875N log2N real operations of addition, subtraction, and scalar multiplication.
作者简介
I. Sergeev
Federal State Unitary Enterprise “Kvant Scientific Research Institute,”
编辑信件的主要联系方式.
Email: isserg@gmail.com
俄罗斯联邦, Moscow
补充文件
