On the Possibility of Creating a Point-Like Neutron Source


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s−1 on the basis of a deuterium–deuterium fusion reaction (or 1012 s−1 on the basis of a deuterium–tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of ~ 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.

About the authors

S. V. Golubev

Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

V. A. Skalyga

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

I. V. Izotov

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

A. V. Sidorov

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

S. V. Razin

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

R. A. Shaposhnikov

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

R. L. Lapin

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

A. F. Bokhanov

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

M. Yu. Kazakov

Institute of Applied Physics of the Russian Academy of Sciences

Email: gol@appl.sci-nnov.ru
Russian Federation, Nizhny Novgorod

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature