Совместное обнаружение и классификация объектов при комплексировании решений, выносимых сенсорами в беспроводных сенсорных сетях

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Разработан оптимальный комплексный алгоритм совместного обнаружения и классификации объектов при радиальной структуре беспроводных сенсорных сетей. В основе этого алгоритма лежит обработка решений о принадлежности объекта тому или иному классу отдельными сенсорами со своим весом, зависящим от характеристик сенсора. Выбор количества и типов используемых сенсоров может быть осуществлен на основе решения оптимизационной задачи, представленной в работе.

作者简介

Воронежский государственный университет

编辑信件的主要联系方式.
Email: vip@phys.vsu.ru
Российская Федерация, 394018, Воронеж, Университетская пл., 1

Воронежский государственный университет

Email: vip@phys.vsu.ru
Российская Федерация, 394018, Воронеж, Университетская пл., 1

参考

  1. Yaraly A. Wireless Sensor Networks (WSN): Technology and Applications. N.Y.: Nova Sci. Publ. Inc., 2021.
  2. Лихтциндер Б.Я., Киричек Р.В., Федотов Е.Д. и др. Беспроводные сенсорные сети. М.: Горячая Линия-Телеком, 2020.
  3. Sreeja B.P., Jakyakumar L., Devi G.S. // Intern. J. Pure Appl. Mathem. 2018. V. 118. № 11. P. 385.
  4. Arampatzis Th., Lygeros J., Manesis S. // Proc. 13th Mediterranean Conf. on Control and Automation Intelligent Control. Limassol. 27–29 Jun. N.Y.: IEEE. 2005. P. 27. https://doi.org/10.1109/.2005.1467103
  5. Logambal M., Thiagarasu Dr. V. // Intern. J. of Engineering Sciences & Research Technology. 2017. V. 6. № 3. P. 35. https://doi.org/10.5281/zenodo.345688
  6. Chair Z., Varshney P.K. // IEEE Trans. 1986. V. TAES-31. № 1. P. 98. https://doi.org/10.1109/TAES.1986.310699
  7. Sriranga N., Nagananda K.G., Blum R.S. et al. // Proc. 21st Int. Conf. Inf. Fusion. Cambridge. 10–13 Jul. N.Y.: IEEE, 2018. P. 1541. https://doi.org/10.23919/ICIF.2018.8454976
  8. Аггарвал Ч. Нейронные сети и глубокое обучение. М.: Диалектика, 2020.
  9. Wu X., Kumar V., Ross Q.J. et al. // Knowledge Inform. Systems. 2008. V. 14. № 1. P. 1. https://doi.org/10.1007/s10115-007-0114-2
  10. Eibe F., Witter I. Data Mining. Practical Machine Learning Tools and Techniques. Waltham: Morgan Kaufmann Publ., 2005.
  11. Калан Р. Основные концепции нейронных сетей. М.: ИД “Вильямс”, 2003.
  12. Фу К. Последовательные методы в распознавании образов и обучение машин. М.: Наука, 1971.
  13. Kitter J., Hatef M., Duin R.P.W., Matas J. // IEEE Trans. 1998. V. PAMI-20. № 3. P. 226. https://doi.org/10.1109/34.667881
  14. Wang T-Y., Han Y.S., Chen B., Varshney P.K. // IEEE Trans. 2006. V. WC-5. № 7. P. 1695. https://doi.org/10.1109/TWC.2006.1673081
  15. Gok J., Yazici A., Cosar A., George R. // IEEE World Congress on Computational Intelligence. Barcelona, Spain. 18–23 Jul. 2010. https://doi.org/10.1109/FUZZY.2010.5583956
  16. Gutta S., Cheng Qi. // 15th Intern. Conf. on Information Fusion. Singapore. 9–12 Jul. 2012. P. 1519.
  17. Javaid A., Javaid N., Wadud Z. et al. // Sensors. 2019. V. 19. № 6. P. 1334. https://doi.org/10.3390/s19061334
  18. Скляр Б. Цифровая связь: Теоретические основы и практическое применение. М.: ИД “Вильямс”, 2003.
  19. Левин Б.Р. Теоретические основы статистической радиотехники. М.: Сов. радио, 1975. Кн. 2.
  20. Парфенов В.И., Ле В.Д. // Физика волновых процессов и радиотехнические системы. 2020. Т. 23. № 2. С. 49. https://doi.org/10.18469/1810-3189.2020.23.2.49-54
  21. Парфенов В.И., Ле В.Д. // Компьютерная оптика. 2021. Т. 45. № 3. С. 364. https://doi.org/10.18287/2412-6179-CO-788
  22. Parfenov V.I., Le V.D. // Int. J. Sensor Networks. 2022. V. 38. № 2. P. 71. https://doi.org/10.1504/IJSNET.2022.121157

补充文件

附件文件
动作
1. JATS XML
2.

下载 (83KB)
3.

下载 (77KB)
4.

下载 (83KB)
5.

下载 (73KB)

版权所有 © В.И. Парфенов, А.А. Калининский, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».