Creation of High-Power Technological Nanosecond Frequency-Pulse Solid-State Lasers: Problems and Solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A review analysis of the problematic aspects of creating high-power nanosecond frequency-pulse solid-state lasers for use in various technological fields, including the electronics industry, has been carried out. Considered installations with various pumping methods (lamp and diode) in the frequency (about 100 Hz) of generation in the micron region of the infrared range. The possibilities of increasing the energy potential of influencing pulses in master oscillator-amplifier circuits, including two-pass amplification, are analyzed. Discussed possibilities and prospects for the use of lasers with active elements (AEs) on glass, as well as the synthesis of large-sized garnet single crystals with an admixture of rare earth elements and optical
ceramics for the production of AEs.

作者简介

V. Rogalin

Institute of Electrophysics and Electric Power Engineering, Russian Academy of Sciences

Email: v-rogalin@mail.ru
St. Petersburg, 191186 Russia

K. Krymskii

Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: v-rogalin@mail.ru
Dolgoprudny, Moscow oblast, 141700 Russia

参考

  1. Koechner W. Solid-State Laser Engineering. N.Y.: Springer, 2006.
  2. Мак А.А., Сомс Л.Н., Фромзель В.А., Яшин В.Е. Лазеры на неодимовом стекле. М.: Наука, 1990.
  3. Зверев Г.М.. Голяев Ю.Д., Шалаев Е.А., Шокин А.А. Лазеры на алюмоиттриевом rранате с неодимом. М.: Радио и связь, 1985.
  4. Шестаков А. // Фотоника. 2007. № 5. С. 30.
  5. Новиков И.А., Ножницкий Ю.А., Шибаев С.А. // Авиационные двигатели. 2022. № 2. С. 59. https://doi.org/10.54349/26586061_2022_1_59
  6. Вейко В.П., Петров А.А., Самохвалов А.А. Введение в лазерные технологии. Опорный конспект лекций по курсу “Лазерные технологии” / Под ред. В.П. Вейко. СПб: Университет ИТМО, 2018.
  7. Петровский Г.Т., Арбузов В.И., Волынкин В.М. и др. // Оптический журн. 2003. Т. 70. № 5. С. 68.
  8. Саркисов П.Д., Сигаев В.Н., Голубев Н.В., Савинков В.И. Оптическое фосфатное стекло. Пат. РФ № 2426701 // Опубл. Офиц. бюл. “Изобретения. Полезные модели” № 23 от 20.08.2011.
  9. Шаскольская М.П. Кристаллография. М. : Высш. шк., 1984.
  10. Рыбина Э.Н., Брызгалов А.Н., Живулин Д.Е. // Современные проблемы науки и образования. 2012. № 4. https://science-education.ru/ru/article/view?id =6592.
  11. Багдасаров Х.С., Болотина Н.Б., Калинин В.И. и др. // Кристаллография. 1991. Т. 36. № 3. С. 715.
  12. Ковтун Г.П., Кравченко А.И., Щербань А.П. Иттрий-алюминиевый гранат с неодимом: методы выращивания и свойства монокристаллов: Препр. ХФТИ 2004-2. Харьков: ННЦ, ХФТИ, 2004. 16 с.
  13. Ikesue A., Kinoshita T., Kamata K., Yoshida K. // J. Amer. Ceram. Soc. 1995. V. 78 (4). P.1033.
  14. Технологические лазеры вчера, сегодня и завтра // Оборудование, и инструмент для профессионалов. Сер. Металлообработка 2015. № 2. С. 32. https:// www.informdom.com/uploads/metal/15_2/32_ TRUMPF_2015_2.pdf.
  15. Ikesue A., Aung Y.L., Taira T. et al. // Annual Rev. Mater. Res. 2006. V. 36 P. 397.
  16. Kochawattana S., Stevenson A., Lee S.H. et al.// J. Europ. Ceramic Soc. 2008. V. 28. P. 1527.
  17. Багаев С.Н., Осипов В.В., Пестряков Е.В. и др. // Прикладная механика и техническая физика. 2015. Т. 56. № 1. С. 180.
  18. Багаев С.Н., Осипов В.В., Ватник С.М. и др. // Квант. электрон. 2015. Т. 45. № 1. С. 23.
  19. Vatnik S.M., Vedin I.A., Osipov V.V. et al. // Журн. прикладной спектроскопии. 2016. Т. 83. № 6–16. С. 602.
  20. Осипов В.В., Шитов В.А., Лукьяшин К.Е. и др. // Квант. электрон. 2019. Т. 49. № 1. С. 89.
  21. Багаев С.Н., Осипов В.В., Ватник С.М. и др. // Квантов. электрон. 2015. Т. 45. № 5. С. 492.
  22. Импульсные источники света / Под ред. И.С. Маршака. М.: Энергия, 1978.
  23. Камруков А.С., Кулебякина А.И. Импульсные ксеноновые лампы. Техника, эксперимент, расчет: Учебное пособие. М: МГТУ им. Н.Э. Баумана, 2011.
  24. Рыбка Д.В., Бакшт Е.Х., Ломаев М.И. и др. // ЖТФ. 2005. Т. 75. № 2. С. 131.
  25. Борисов Б.Н., Демкин В.К., Дунин В.М. и др. / Лазерно-оптические системы и технологии. М.: “НПО Астрофизика”, 2009. С. 8.
  26. Кравцов Н.В. // Квант. электрон. 2001. Т. 31. № 8. С. 661.
  27. Багдасаров В.Х., Букин В.В., Гарнов С.В. и др. // Cб. докл. десятой всерос. школы для студентов, аспирантов, молодых ученых и специалистов по лазерной физике и лазерным технологиям сборник докладов. Саров: ИПЦ РФЯЦ ВНИИЭФ, 2017. С. 196. http://book.sarov.ru/wp-content/uploads/ Lazer-X-2017.pdf.
  28. Свечников М.Б. Лучевая прочность диэлектрических покрытий в диапазоне длин волн 0.25…1.06 мкм. Дис. … канд. физ.-мат. наук. С.-Пб.: ВНЦ ГОИ им. С. И. Вавилова, 1992. 213 с.
  29. Белоцерковец А.В., Бессараб А.В., Куратов Ю.В. и др. // Квант. электрон. 1992. Т. 19. № 12. С. 1185.
  30. Архипов Д.А., Венглюк В.И., Деревянко В.А. и др. // Научно-техн. вестник информ. технологий, механики и оптики. 2015. Т. 15. № 6. С. 1000.
  31. Строганова Е.В., Галуцкий В.В., Ткачев Д.С., Яковенко Н.А. Монокристаллический материал для дискового лазера. Пат. РФ № 2 591 257 // Опубл. Офиц. бюл. “Изобретения. Полезные модели” № 20 от 20.07.2016.
  32. Бадалян Н.П., Козлов А.Б., Левчук Е.А. и др. Активный элемент дискового лазера. Пат. РФ № 2439761 // Опубл. Офиц. бюл. “Изобретения. Полезные модели” № 1 от 10.01.2012.
  33. Вайлер С. // Фотоника. 2009. № 3. С. 10.
  34. Рогалин В.Е., Крымский М.И., Крымский К.М. // РЭ. 2018. Т. 63. № 11. С. 1188. https://doi.org/10.1134/S0033849418110098
  35. Дианов Е.М. // Уcпехи физ. наук. 2004. Т. 174. № 10. С. 1139. https://doi.org/10.3367/UFNr.0174.200410m.1139

补充文件

附件文件
动作
1. JATS XML
2.

下载 (102KB)
3.

下载 (147KB)
4.

下载 (992KB)
5.

下载 (892KB)
6.

下载 (102KB)
7.

下载 (863KB)
8.

下载 (54KB)
9.

下载 (301KB)
10.

下载 (570KB)
11.

下载 (948KB)
12.

下载 (549KB)

版权所有 © В.Е. Рогалин, К.М. Крымский, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».