Structure and magnetic properties of ZnxFe3–xO4 nanoparticles obtained by mechanochemical synthesis

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A scalable method for the synthesis of zinc ferrites ZnxFe3–xO4 (with a doping degree of x = 0; 0.125; 0.25; 0.5; 1) by controlled oxidation of an iron and zinc mixture during mechanochemical synthesis is proposed. Comprehensive studies of the processes occurring during mechanochemical synthesis were carried out using X-ray diffraction analysis, Mössbauer spectroscopy and measurement of magnetic properties. It was shown that zinc ions in the synthesized ferrites occupy both tetrahedral and octahedral positions, which leads to a decrease in the saturation magnetization to 44 Am2/kg with an increase in the doping degree to x = 1. An increase in the doping degree leads to a monotonic decrease in the coercivity to 40.3 Oe, which can be used to obtain materials with desired properties.

About the authors

V. A Mikheev

National University of Science and Technology MISIS

Moscow, Russian Federation

P. I Nikolenko

National University of Science and Technology MISIS

Moscow, Russian Federation

T. R Nizamov

National University of Science and Technology MISIS

Moscow, Russian Federation

A. I Novikov

National University of Science and Technology MISIS

Moscow, Russian Federation

A. S Lileev

National University of Science and Technology MISIS

Moscow, Russian Federation

I. V Shchetinin

National University of Science and Technology MISIS

Email: ingvar@misis.ru
Moscow, Russian Federation

References

  1. Petrov K.D., Chubarov A.S. // Encyclopedia. 2022. V. 2. № 4. P. 1811. doi.org/10.3390/encyclopedia2040125
  2. Yang H., Wang H., Wen C. et al. // J. Nanobiotechnology. 2022. V. 20. Article No. 98. doi.org/10.1186/s12951-022-01291-2
  3. Turina C., Berensmeier S., Schwaminger S.P.// Pharmaceutical. 2021. V. 14. № 5. P. 405. doi.org/10.3390/ph14050405
  4. Efremova M.V., Naumenko V.A., Spasova M. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11295. doi.org/10.1038/s41598-018-29618-w
  5. Liu X., Zhang Y., Wang Y. et al. // Theranostics. 2020. V. 10. № 8. P. 3793. doi.org/10.7150%2Fthno.40805
  6. Suriyanto, Ng E.Y.K, Kumar S.D. // BioMedical Engineering OnLine. 2017. V. 16. Article No.36. doi.org/10.1186/s12938-017-0327-x
  7. Kumar C.S.S.R., Mohammad F. //Advanced Drug Delivery Review. 2011. V. 63. № 9. P. 789. doi.org/10.1016/j.addr.2011.03.008
  8. Abenojar E.C., Wickramasinghe S., Bas-Concepcion J., Samia A.C.S. // Prog. Nat. Sci. Mater. Int. 2016. V. 26. № 5. P. 440
  9. Hergt R., Dutz S. // J. Magn. Magn. Mater. 2007. V. 311. № 1. P. 187. doi.org/10.1016/j.jmmm.2006.10.1156
  10. Dutz S., Hergt R. // Int. J. Hyperthermia. 2013. V. 29. № 8. P. 790. doi.org/10.3109/02656736.2013.822993
  11. Ma M., Wu Y., Zhou J. et al.//J. Magn. Magn. Mater. 2004. V. 268. P. 33.
  12. Iida H., Takayanagi K., Nakanishi, T., Osaka T. // J. Colloid Interface Sci. 2007. V. 314. P. 274.
  13. Salazar J.S., Perez L., de Abril O. et al. //Chem. Mater. 2011. V. 23. № 6. P. 1379. doi/10.1021/cm103188a
  14. Upadhyay S., Parekh K., Pandey B.// J. Alloys Compounds. 2016. V. 678. P. 478.
  15. Yavuz C.T., Mayo J.T., Yu W.W. et al. //Science. 2006. V.314. № 5801. P. 964. doi/10.1126/science.1131475
  16. Jun Y.W., Huh Y.M., Choi J S. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 5732.
  17. Huber D.L. // Small. 2005. V. 1. № 5. P. 482.
  18. Ozel F., Kockar H. // J. Magn. Magn. Mater. 2015. V. 373. P. 213.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).