A new automatic gain control system for the microwave excitation signal for quantum frequency standards based on rubidium-87 and cesium-133 atoms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The need to develop a new automatic gain control system for the microwave excitation signal in quantum frequency standards (QFS) based on rubidium-87 and cesium-133 atoms is substantiated. Factors that negatively affect the operation of the automatic gain control system for the microwave excitation signal during the operation of the standards are identified. A new circuit for automatic gain control in the microwave paths of QFSs based on rubidium-87 and cesium-133 atoms has been developed. The designs of new units of the automatic gain control circuit are considered: a signal amplifier that generates an error signal and a PID controller that controls an attenuator that regulates the output signal. Calculation and modeling of the operation of the new units of automatic gain control of the microwave excitation signal included in the microwave paths of two QFSs have been performed. The obtained results confirm the validity of the new design solutions and methods for adjusting the amplitude of the microwave excitation signal in the automatic gain control circuit for QFSs based on rubidium-87 and cesium-133 atoms.

About the authors

A. V Shavshin

The Bonch-Bruevich Saint Petersburg State University of Telecommunications; Institute of Radio Navigation and Time; Peter the Great Saint Petersburg Polytechnic University; Saint Petersburg Electrotechnical University "LETI"

Email: Shavshin2107@gmail.com
Saint Petersburg, Russian Federation; Saint Petersburg, Russian Federation; Saint Petersburg, Russian Federation; Saint Petersburg, Russian Federation

A. A Petrov

Institute of Radio Navigation and Time

Saint Petersburg, Russian Federation

V. V Davydov

Peter the Great Saint Petersburg Polytechnic University; Saint Petersburg Electrotechnical University "LETI"

Saint Petersburg, Russian Federation; Saint Petersburg, Russian Federation

References

  1. Hudson A., Camparo J. // Phys. Rev. Appl. 2020. V. 13. № 6. Article No. 064007.
  2. Семенов В.В., Никифоров Н.Ф., Ермак С.В., Давыдов В.В. //РЭ. 1990.Т.35. № 10. С. 2179.
  3. Kuzmin M.S., Rogov S.A. // Computer Optics. 2019. V. 43. № 3. Р. 391.
  4. Grevtseva A.S., Dmitriev R.A., Rud V.Yu. // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. Article No. 012055.
  5. Petrov A.A., Davydov V.V., Grebenikova N.M. // Proc. 18th Int. Conf. “Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN2018, ruSMART 2018)”. 25–27 Aug. St. Petersburg. Cham: Springer Nature, 2018. P. 641.
  6. Gopinath G., Li Y., Davuluri S. // EPJ Quantum Technology. 2024. V. 11. № 1. Р. 41.
  7. Картошкин В.А. //Оптика и спектроскопия. 2023. Т. 131. № 8. С. 1097.
  8. Grevtseva A.S., Davydov R.V., Dudkin V.I., Rud’ V.Y. // J. Phys.: Conf. Ser. 2019. V. 1326. № 1. Article No. 012043.
  9. Petrov A.A., Shabanov V.E., Zalyotov D.V. et al. // 2018 IEEE Int. Conf. on Electrical Engineering and Photonics (EExPolytech) 22–23 Oct. Saint-Petersburg, N.Y.: IEEE, 2018. P. 52–55.
  10. Roslund J.D., Cingöz A., Lunden W.D. et al. // Nature. 2024. V. 628. № 8009. Р. 736.
  11. Картошкин В.А. // ЖТФ. 2021. Т. 66. № 9. С. 1316.
  12. Grevtseva A., Davydov V.V., Rud V. // CEUR Workshop Proc. 2020. V. 2667. P. 15.
  13. Hu S., Liu X., Xiao Y., Zhao W., Li S. // Dianwang Jishu/Power System Technology. 2024. V. 48. № 7. Р. 3091.
  14. Сазонов Д.М. Антенны и устройства СВЧ. 1988. С. 88.
  15. Петров А.А., Залетов Д.В., Давыдов В.В., Шаповалов Д.В. // РЭ. 2021. Т. 66. № 3. С. 285.
  16. Петров А.А., Давыдов В.В. // РЭ.2017. Т. 62. № 3. С. 300.
  17. Hein G.W. // Satellite Navigation. 2020. V. 1. Р. 22,
  18. Картошкин В.А. // Оптика и спектроскопия. 2017. Т. 123. № 3. С. 315.
  19. Валов А.П., Исупова Е.В., Давыдов В.В. // Ученые записки физического факультета Московского университета. 2024. № 4. Статья 2441205.
  20. Петров А.А., Давыдов В.В., Гребенникова Н.М. // РЭ. 2018. Т. 63. № 11. С. 1159.
  21. Shavshin A.V. // IEEE2022 VIII Int. Conf. on Information Technology and Nanotechnology (ITNT‑2022). 23–27 May. Samara. N.Y.: IEEE, 2022. Paper No. 9848676.
  22. Риле Ф. Стандарты частоты. Принципы и применения. М.: Физматлит, 2009.
  23. Дмитриев С.П., Доватор Н.А., Картошкин В.А. // ЖТФ. Т. 85. № 6. С. 40.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).