Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system
- Authors: Egorova T.1, Kalinina M.1, Simonenko E.2, Simonenko N.2, Kopitsa G.1,3, Glumov O.4, Mel’nikova N.4, Murin I.4, Almásy L.5, Shilova O.1,6
-
Affiliations:
- Grebenshchikov Institute of Silicate Chemistry
- Kurnakov Institute of General and Inorganic Chemistry
- Konstantinov St. Petersburg Institute of Nuclear Physics, NITs “Kurchatov Institute”
- St. Petersburg State University
- Institute for Solid State Physics and Optics
- Ul’yanov (Lenin) LETI St. Petersburg State Electrotechnical University
- Issue: Vol 62, No 10 (2017)
- Pages: 1275-1285
- Section: Synthesis and Properties of Inorganic Compounds
- URL: https://journal-vniispk.ru/0036-0236/article/view/168053
- DOI: https://doi.org/10.1134/S0036023617100072
- ID: 168053
Cite item
Abstract
Two alternative chemical synthesis methods—cryotechnological coprecipitation of hydroxides and cocrystallization of salts—were used for preparing (CeO2)1–x(Y2O3)x nanopowders (x = 0.10, 0.15, 0.20) with a mean coherent scattering domain size of ~7–11 nm and Ssp = 2.1–97.5 m2/g. From these nanopowders, ceramic nanomaterials with mean coherent scattering domain sizes of ~61–85 nm were synthesized. It was studied how the phase composition, microstructure, and electrical transport properties of the produced samples depend on the Y2O3 content of a CeO2-based solid solution and on the synthesis method. It was shown that, in the series (CeO2)1–x(Y2O3)x (x = 0.10, 0.15, 0.20), the solid solution (CeO2)0.90(Y2O3)0.10 has the highest ionic conductivity with the ion transport number ti = 0.73 (600°C). In its physicochemical characteristics, this ceramic can be used as a solid electrolyte of intermediate-temperature fuel cells.
About the authors
T.L. Egorova
Grebenshchikov Institute of Silicate Chemistry
Author for correspondence.
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 199034
M.V. Kalinina
Grebenshchikov Institute of Silicate Chemistry
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 199034
E.P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry
Email: egorova.offver@gmail.com
Russian Federation, Moscow, 119991
N.P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry
Email: egorova.offver@gmail.com
Russian Federation, Moscow, 119991
G.P. Kopitsa
Grebenshchikov Institute of Silicate Chemistry; Konstantinov St. Petersburg Institute of Nuclear Physics, NITs “Kurchatov Institute”
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 199034; Gatchina, Leningrad oblast, 188300
O.V. Glumov
St. Petersburg State University
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 190034
N.A. Mel’nikova
St. Petersburg State University
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 190034
I.V. Murin
St. Petersburg State University
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 190034
L. Almásy
Institute for Solid State Physics and Optics
Email: egorova.offver@gmail.com
Hungary, Budapest, 1121
O.A. Shilova
Grebenshchikov Institute of Silicate Chemistry; Ul’yanov (Lenin) LETI St. Petersburg State Electrotechnical University
Email: egorova.offver@gmail.com
Russian Federation, St. Petersburg, 199034; St. Petersburg, 197376
Supplementary files
