Nanocrystalline ZnO Obtained by the Thermal Decomposition of [Zn(H2O)(O2C5H7)2] in 1-Butanol: Synthesis and Testing as a Sensing Material
- Авторы: Mokrushin A.S.1, Gorobtsov P.Y.1, Vlasov I.S.2, Volkov I.A.2, Maeder T.2,3, Vasiliev A.A.4, Sevastyanov V.G.1, Kuznetsov N.T.1, Simonenko E.P.1,2, Simonenko N.P.1,2, Nagornov I.A.1,5
-
Учреждения:
- Kurnakov Institute of General and Inorganic Chemistry
- Moscow Institute of Physics and Technology (State University)
- École Polytechnique Fédérale de Lausanne
- National Research Center “Kurchatov Institute”
- Dmitry Mendeleev University of Chemical Technology of Russia
- Выпуск: Том 63, № 11 (2018)
- Страницы: 1519-1528
- Раздел: Synthesis and Properties of Inorganic Compounds
- URL: https://journal-vniispk.ru/0036-0236/article/view/169120
- DOI: https://doi.org/10.1134/S0036023618110189
- ID: 169120
Цитировать
Аннотация
The influence of conditions of heat treatment of a solution [Zn(H2O)(O2C5H7)2] in 1-butanol (temperature 125–185°C, treatment times 2, 4, and 6 h) on dispersion and microstructure of the formed nanocrystalline and poorly aggregated zinc oxide, promising component for optoelectronics, including as receptor materials of chemical gas sensors, was investigated. IR spectroscopy showed that the precursor decomposition occurs through the cleavage of the Cβ–Cγ bond of the ligand to form acetone and butyl acetate. It was determined that at the minimum treatment temperature and time (125°C, 2 h) ZnO nanoparticles are nearly spherical, and under hard conditions, rodlike particles are formed. At 125°C (treatment times 4 and 6 h), rodlike particles are organized into dense agglomerates resembling bundles in shape, and at the higher temperatures there is no aggregation of ZnO nanoparticles. The high CO selectivity and sensitivity (4–100 ppm) was revealed for oxide coatings obtained by screen printing using ZnO nanopowders synthesized at 125°C (treatment times 2 and 4 h).
Ключевые слова
Об авторах
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991
I. Vlasov
Moscow Institute of Physics and Technology (State University)
Email: ep_simonenko@mail.ru
Россия, Dolgoprudnyi, Moscow oblast, 141701
I. Volkov
Moscow Institute of Physics and Technology (State University)
Email: ep_simonenko@mail.ru
Россия, Dolgoprudnyi, Moscow oblast, 141701
T. Maeder
Moscow Institute of Physics and Technology (State University); École Polytechnique Fédérale de Lausanne
Email: ep_simonenko@mail.ru
Россия, Dolgoprudnyi, Moscow oblast, 141701; Lausanne, CH-1015
A. Vasiliev
National Research Center “Kurchatov Institute”
Email: ep_simonenko@mail.ru
Россия, Moscow, 123182
V. Sevastyanov
Kurnakov Institute of General and Inorganic Chemistry
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry; Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141701
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry; Moscow Institute of Physics and Technology (State University)
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141701
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry; Dmitry Mendeleev University of Chemical Technology of Russia
Email: ep_simonenko@mail.ru
Россия, Moscow, 119991; Miusskaya sq. 9, Moscow, 125047
Дополнительные файлы
