Theory of Self-Diffusion in Liquid Metals
- Authors: Malomuzh N.P.1, Makhlaichuk V.N.1
- 
							Affiliations: 
							- Department of Theoretical Physics and Astronomy, Odessa National University Named after I.I. Mechnikov
 
- Issue: Vol 2019, No 8 (2019)
- Pages: 750-757
- Section: Article
- URL: https://journal-vniispk.ru/0036-0295/article/view/173394
- DOI: https://doi.org/10.1134/S0036029519080111
- ID: 173394
Cite item
Abstract
The physical nature of the self-diffusion coefficient in liquid alkali metals is discussed. Self-diffusion coefficient D is represented as the sum of two contributions, namely, single-particle and collective ones. The contribution of the collective component near the melting point is shown to be 5–6% and to increase to 25–30% when the temperature increases to T/Tc = 0.75, where Tc is the critical temperature. The sum of the single-particle and collective contributions reproduces the experimental values and the temperature dependence of the self-diffusion coefficient of a liquid alkali metal at a sufficient accuracy (above 95%). A new method is proposed to calculate the ionic radii of liquid metals and it is based on their shear viscosities. The problem of the applicability of Einsten’s formula is discussed in terms of the similarity principle in order to determine the single-particle contributions to the self-diffusion coefficients of liquids and liquid metals. A new formulation of the similarity principle for liquid metals is proposed.
About the authors
N. P. Malomuzh
Department of Theoretical Physics and Astronomy, Odessa National University Named after I.I. Mechnikov
							Author for correspondence.
							Email: interaktiv@ukr.net
				                					                																			                												                	Ukraine, 							Odessa, 65082						
V. N. Makhlaichuk
Department of Theoretical Physics and Astronomy, Odessa National University Named after I.I. Mechnikov
														Email: interaktiv@ukr.net
				                					                																			                												                	Ukraine, 							Odessa, 65082						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					