On subordination of some analytic functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We define V (α, β) (α < 1 and β > 1), the new subclass of analytic functions with bounded positive real part, \(V\left( {\alpha ,\beta } \right): = \left\{ {f \in A:\alpha < \operatorname{Re} \left\{ {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right\} < \beta } \right\}\), and study some properties of V (α, β). We also study the class U (γ) (γ > 0): \(u\left( \gamma \right): = \left\{ {f \in A:\left| {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right| - 1 < \gamma } \right\}\), where A is the class of normalized functions.

About the authors

R. Kargar

Young Researchers and Elite Club, Urmia Branch

Author for correspondence.
Email: rkargar1983@gmail.com
Iran, Islamic Republic of, Urmia

A. Ebadian

Department of Mathematics

Email: rkargar1983@gmail.com
Iran, Islamic Republic of, Tehran

J. Sokół

Department of Mathematics

Email: rkargar1983@gmail.com
Poland, Rzeszów

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.