On subordination of some analytic functions
- Authors: Kargar R.1, Ebadian A.2, Sokół J.2
-
Affiliations:
- Young Researchers and Elite Club, Urmia Branch
- Department of Mathematics
- Issue: Vol 57, No 4 (2016)
- Pages: 599-605
- Section: Article
- URL: https://journal-vniispk.ru/0037-4466/article/view/170584
- DOI: https://doi.org/10.1134/S0037446616040042
- ID: 170584
Cite item
Abstract
We define V (α, β) (α < 1 and β > 1), the new subclass of analytic functions with bounded positive real part, \(V\left( {\alpha ,\beta } \right): = \left\{ {f \in A:\alpha < \operatorname{Re} \left\{ {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right\} < \beta } \right\}\), and study some properties of V (α, β). We also study the class U (γ) (γ > 0): \(u\left( \gamma \right): = \left\{ {f \in A:\left| {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right| - 1 < \gamma } \right\}\), where A is the class of normalized functions.
About the authors
R. Kargar
Young Researchers and Elite Club, Urmia Branch
Author for correspondence.
Email: rkargar1983@gmail.com
Iran, Islamic Republic of, Urmia
A. Ebadian
Department of Mathematics
Email: rkargar1983@gmail.com
Iran, Islamic Republic of, Tehran
J. Sokół
Department of Mathematics
Email: rkargar1983@gmail.com
Poland, Rzeszów
Supplementary files
