Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups
- Authors: Monakhov V.S.1, Trofimuk A.A.2
-
Affiliations:
- Francisk Skorina Gomel State University
- Pushkin Brest State University
- Issue: Vol 59, No 5 (2018)
- Pages: 922-930
- Section: Article
- URL: https://journal-vniispk.ru/0037-4466/article/view/172067
- DOI: https://doi.org/10.1134/S0037446618050166
- ID: 172067
Cite item
Abstract
Let P be a subgroup of a Sylow subgroup of a finite group G. If P is a Sylow subgroup of some normal subgroup of G then P is called normally embedded in G. We establish tests for a finite group G to be p-supersoluble provided that every maximal subgroup of a Sylow p-subgroup of X is normally embedded in G. We study the cases when X is a normal subgroup of G, X = Op',p(H), and X = F*(H) where H is a normal subgroup of G.
About the authors
V. S. Monakhov
Francisk Skorina Gomel State University
Author for correspondence.
Email: victor.monakhov@gmail.com
Belarus, Gomel
A. A. Trofimuk
Pushkin Brest State University
Email: victor.monakhov@gmail.com
Belarus, Brest
Supplementary files
