Developing a Model of Condensation under Zero- and Nonzero-Gravity Conditions for Miniature Loop Heat Pipes
- Authors: Velikanov A.A.1, Il’mov D.N.1, Kudryakov S.B.1, Nagornova O.A.1, Sobolev V.V.1
-
Affiliations:
- JSC State Scientific Center of the Russian Federation Keldysh Research Center
- Issue: Vol 61, No 1 (2023)
- Pages: 130-139
- Section: Heat and Mass Transfer and Physical Gasdynamics
- URL: https://journal-vniispk.ru/0040-3644/article/view/138657
- DOI: https://doi.org/10.31857/S0040364423010118
- ID: 138657
Cite item
Abstract
A physico-mathematical model of condensation in an annular flow regime, in which the gravity force influence is negligibly low, is developed. The condensation model is based on the calculation of frictional pressure drop using the technique developed by L. Sun and K.A. Mishima for minichannels. The model takes into account the pressure recovery due to a slowdown of vapor velocity. It is assumed that condensate moves in the form of laminar film with its velocity distributed according to the Hagen–Poiseuille law. Proceeding from this assumption, the film thickness and void fraction are calculated. For the Earth-normal gravity conditions, a method is developed for matching the annular flow model with the model of stratified flow, which can take place in the condensation end section if the vapor velocity slows down and the gravity force becomes dominating. Owing to this, the predicted values of the average heat transfer coefficient and condensation section length are in good agreement with the experimental results obtained in a miniature ammonia loop heat pipe in a climatic chamber.
About the authors
A. A. Velikanov
JSC State Scientific Center of the Russian Federation Keldysh Research Center
Email: velikanov_a@bk.ru
125438, Moscow, Russia
D. N. Il’mov
JSC State Scientific Center of the Russian Federation Keldysh Research Center
Email: ilmovdn@mail.ru
125438, Moscow, Russia
S. B. Kudryakov
JSC State Scientific Center of the Russian Federation Keldysh Research Center
Email: kudryakov@kerc.msk.ru
125438, Moscow, Russia
O. A. Nagornova
JSC State Scientific Center of the Russian Federation Keldysh Research Center
Email: sobolev@kerc.msk.ru
125438, Moscow, Russia
V. V. Sobolev
JSC State Scientific Center of the Russian Federation Keldysh Research Center
Author for correspondence.
Email: sobolev@kerc.msk.ru
125438, Moscow, Russia
References
- Майданик Ю.Ф., Ферштатер Ф.Г., Пастухов В.Г. Контурные тепловые трубы: разработка, исследование, элементы инженерного расчета. Свердловск: УрО АН СССР, 1989. 52 с.
- Справочник по теплообменникам. В 2-х т. Т. 1 / Пер. с англ. Под ред. Петухова Б.С., Шикова В.К. М.: Энергоатомиздат, 1987. 560 с.
- Guohui Zhou, Ji Li. Two-phase Flow Characteristics of a High Performance Loop Heat Pipe with Flat Evaporator under Gravity // Int. J. Heat Mass Transfer. 2018. V. 117. P. 1063.
- Kaifen Yan, Nanxi Li, Runze Zhao et al. Visualization Study on the Condensation in a Propylene Loop Heat Pipe Operating at Condenser Temperatures between 153 and 283 K // Appl. Thermal Eng. 2021. V. 185. 116349.
- Dobson M.K., Chato J.C. Condensation in Smooth Horizontal Tubes // Heat Transfer. 1998. V. 120. P. 193.
- Akers W.W., Deans H.A., Crosser O.K. Condensing Heat Transfer within Horizontal Tubes // Chem. Eng. Prog. Symp. Ser. 1959. V. 55. P. 171.
- Chernysheva M.A., Vershinin S.V., Maydanik Yu.F. Heat Transfer During Condensation of Moving Steam in a Narrow Channel // Int. J. Heat Mass Transfer. 2009. V. 52. P. 2437.
- Cavallini A., Zecchin R. Heat Transfer and Pressure Drop in Forced Convection Condensation Inside Tubes // Proc. I.I.R. Joint Meeting of Commissions B1 and B2. Freudenstadt, Germany, 1972. P. 139.
- Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1975. С. 263.
- Shah M.M. A General Correlation for Heat Transfer During Film Condensation Inside Pipes // Int. J. Heat Mass Transfer. 1979. V. 22. P. 547.
- Mishkinis D., Ochterbeck J.M. Analysis of Tubeside Condensation in Microgravity and Earth-normal Gravity // Proc. 5th Minsk Int. Seminar ‘‘Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, 2003. P. 36.
- Буз В.Н., Горин В.В., Гоголь Н.И. Моделирование полной конденсации пара внутри трубы // IV Рос. нац. конф. по теплообмену. 2006. С. 57.
- Ховалыг Д., Бараненко А.В. Методы расчета градиента давления двухфазного потока при течении в малых каналах // Вестник Международной академии холода. 2012. № 1. С. 3.
- Sun L., Mishima K.A. Evaluation Analysis of Prediction Methods for Two-phase Flow Pressure Drop in Mini-channels // Int. J. Multiphase Flow. 2009. V. 35. № 1. P. 47.
- Попов Д.Н., Панаиотти С.С., Рябинин М.В. Гидромеханика. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 383 с.
- Butterworth D. Simplified Methods for Condensation on a Vertical Surface with Vapour Shear. UKAEA Rept. AERE-R9683, 1981.
- Кутателадзе С.С. Основы теории теплообмена. М.: Машгиз, 1962. 460 с.
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 720 с.
- Chato J.C. Laminar Condensation Inside Horizontal and Inclined Tubes // ASHRAE J. 1962. V. 4. № 2. P. 52.
- Jaster H., Kosky P.G. Condensation Heat Transfer in a Mixed Flow Regime // Int. J. Heat Mass Transfer. 1976. V. 19. P. 95.
Supplementary files
