Analytical and Numerical Solution of the Problem on Nonstationary Heat Exchange of Counterflows

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A solution was obtained to the nonstationary problem of heat transfer of counterflows that occur when a liquid flows through a loop. At the far end of the loop, temperature equality is specified and the temperature difference at the inlet and outlet is determined based on calculations at a given temperature of the incoming transfer fluid. It is shown that the formation of thermophysical processes in the heat transfer system under consideration is governed by the dimensionless convective–conductive parameter 
 which is the ratio of the contributions of convection and heat transfer to the heat exchange of the system. The solution is represented in the Laplace–Carson integral transform space. The originals were constructed using the den Iseger numerical inversion algorithm, since it is difficult to obtain them by analytical methods. The spatiotemporal dependences of temperature changes in the downstream and upstream flows are presented, which make it possible to broaden the existing understanding of physical processes for different values of the dimensionless convective–conductive parameter. It is shown that with increasing 
, the contribution of convection, as well as that of kinematic temperature waves, increases.

Авторлар туралы

A. Filippov

Bashkir State University

Email: ahoksana@yandex.ru
Ufa, Russia

O. Akhmetova

Bashkir State University

Email: ahoksana@yandex.ru
Ufa, Russia

M. Zelenova

Bashkir State University

Хат алмасуға жауапты Автор.
Email: ahoksana@yandex.ru
Ufa, Russia

Әдебиет тізімі

  1. Коротаев Г.К., Шутяев В.П. Численное моделирование циркуляции океана со сверхвысоким пространственным разрешением // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 3. С. 334.
  2. Козина О.В., Дугин В.С. Климатообразующая роль океанических течений // Вестн. Нижневартовск. гос. ун-та. 2013. № 3. С. 22.
  3. Лучаков Ю.И., Камышев Н.Г., Шабанов П.Д. Перенос тепла кровью: сопоставление расчетных и экспериментальных данных // Обзоры по клинической фармакологии и лекарственной терапии. 2009. Т. 7. № 4. С. 3.
  4. Данилушкин И.А., Лежнев М.В. Структурное представление процесса теплообмена при встречном направлении взаимодействующих потоков // Вестн. Самарск. гос. техн. ун-та. Сер. Технические науки. 2007. № 1(19). С. 16.
  5. Булыгин Ю.А., Бородкин В.В. Моделирование “горячей” промывки нефтяных скважин мобильными колтюбинговыми установками // Насосы. Турбины. Системы. 2018. № 2(27). С. 62.
  6. Рамазанов А.Ш., Акчурин Р.З. Моделирование распределения температуры в бурящейся скважине // Вестн. Башкирск. ун-та. 2016. Т. 21. № 2. С. 269.
  7. Тимофеев Н.Г., Скрябин Р.М., Пинигин В.В. О температурном режиме при бурении скважин в условиях криолитозоны // Вестн. Сев.-Вост. фед. ун-та им. М.К. Аммосова. Сер. Науки о Земле. 2017. № 3(07). С. 54.
  8. Diaz G. Numerical Investigation of Transient Heat and Mass Transfer in a Parallel-flow liquid-desiccant Absorber // Heat Mass Transfer. 2010. V. 46. P. 1335.
  9. Heller A. CFD Simulation of the Thermal Performance of a Parallel Counter-Parallel Flow Heat Exchanger for the Treatment of Hypothermia. Dis., Prof. Papers, and Capstones. Las Vegas: University of Nevada, 2014. 172 p.
  10. Krasniqi D., Selimaj R., Krasniqi M., Filkoski R.V. Thermal Dynamic Analysis of Parallel and Counter Flow Heat Exchangers // Int. J. Mech. Eng. Technol. (IJMET). 2018. V. 9. № 6. P. 723.
  11. Карташов Э.М., Кудинов В.А. Аналитические методы теории теплопроводности и ее приложения. М.: URSS, 2017. 1080 с.
  12. Den Iseger P. Numerical Transform Inversion Using Gaussian Quadrature // Probability in the Engineering and Informational Sciences. 2006. № 20. P. 1.
  13. Филиппов А.И., Зеленова М.А. Релаксационные процессы в скважине после пуска насоса // Инж. физика. 2020. № 10. С. 17.
  14. Филиппов А.И., Ковальский А.А., Ахметова О.В., Зеленова М.А., Губайдуллин М.Р. Макроскопическое фильтрационное поле давления в среде с двойной пористостью // ИФЖ. 2021. Т. 94. № 4. С. 863.

Қосымша файлдар


© А.И. Филиппов, О.В. Ахметова, М.А. Зеленова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».