Wave Dynamics of Perfluorocarbon Droplets in a Viscoelastic Liquid

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The authors have developed a mathematical model and present a numerical study of the growth of a vapor bubble as a result of acoustic evaporation of a spherical perfluorocarbon droplet in a viscoelastic liquid. The Kelvin–Voigt, Maxwell, Zener, and Oldroyd linear rheological models are considered. The problem reduces to solving a system of ordinary differential equations for the radius and temperature of the bubble, the radius of the droplet, and normal stresses at the droplet boundary, together with the heat conduction equations for the internal and external liquid. Spatial discretization of the equations is done with an implicit finite difference scheme. Ordinary differential equations are solved by the fifth-order Runge–Kutta method with an adaptive computational step. To check the correctness of the numerical calculation in a particular case, the theoretical results are compared with known experimental data. The influence of the shear modulus, relaxation time of the elastic carrier phase, and differences in rheological models on the radial dynamics of a vapor bubble inside a droplet in an external viscoelastic liquid is demonstrated.

作者简介

D. Gubaidullin

Institute of Mechanics and Engineering—Subdivision of the Federal State Budgetary Institution of Science, “Kazan Scientific Center of the Russian Academy of Sciences”

Email: kopperfildd@ya.ru
Kazan, Russia

Yu. Fedorov

Institute of Mechanics and Engineering—Subdivision of the Federal State Budgetary Institution of Science, “Kazan Scientific Center of the Russian Academy of Sciences”

编辑信件的主要联系方式.
Email: kopperfildd@ya.ru
Kazan, Russia

参考

  1. Kripfgans O.D., Fowlkes J.B., Miller D.L., Eldevik O.P., Carson P.L. Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications // Ultrasound Med. Biol. 2000. V. 26. P. 1177.
  2. Sheeran P.S., Dayton P.A. Phase-change Contrast Agents for Imaging and Therapy // Curr. Pharm. Des. 2012. V. 18. P. 2152.
  3. Kee A.L.J., Teo B.M. Biomedical Applications of Acoustically Responsive Phase Shift Nanodroplets: Current Status and Future Directions // Ultrason. Sonochem. 2019. V. 56. P. 37.
  4. Rapoport N., Gao Z., Kennedy A. Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy // J. Natl. Cancer Inst. 2007. V. 99. № 14. P. 1095.
  5. Sheeran P.S., Wong V.P., Luois S., McFarland R.J., Ross W.D., Feingold S., Matsunaga T.O., Dayton P.A. Decafluorobutane as a Phase-change Contrast Agent for Low-energy Extravascular Ultrasonic Imaging // Ultrasound Med. Biol. 2011. V. 37. P. 1518.
  6. Sheeran P.S., Luois S., Dayton P.A., Matsunaga T.O. Formulation and Acoustic Studies of a New Phase-shift Agent for Diagnostic and Therapeutic Ultrasound // Langmuir. 2011. V. 27. P. 10412.
  7. Sheeran P.S., Luois S., Mullin L.B., Matsunaga T.O., Dayton P.A. Design of Ultrasonically-activatable Nanoparticles Using Low Boiling Point Perfluorocarbons // Biomaterials. 2012. V. 33. P. 3262.
  8. Doinikov A.A., Sheeran P.S., Bouakaz A., Dayton P.A. Vaporization Dynamics of Volatile Perfluorocarbon Droplets: a Theoretical Model and in Vitro Validation // Med. Phys. 2014. V. 41. P. 102901.
  9. Shpak O., Stricker L., Versluis M., Lohse D. The Role of Gas in Ultrasonically Driven Vapor Bubble Growth // Phys. Med. Biol. 2013. V. 58. P. 2523.
  10. Шагапов В.Ш., Галимзянов М.Н., Вдовенко И.И. Особенности устойчивости и акустических свойств перегретой жидкости с газовыми зародышами при повышении давления // ТВТ. 2019. Т. 57. № 5. С. 748.
  11. Шагапов В.Ш., Галимзянов М.Н., Вдовенко И.И. Особенности отражения прохождения акустических волн на границе «чистой» и пузырьковой жидкостей при прямом их падении // ТВТ. 2019. Т. 57. № 2. С. 284.
  12. Cho S., Son G. A Level Set Method for Bubble Growth in Acoustic Droplet Vaporization // Int. Commun. Heat Mass Transfer. 2018. V. 93. P. 83.
  13. Cho S., Son G. Numerical Study of Droplet Vaporization under Acoustic Pulsing Conditions // J. Mech. Sci. Technol. 2019. V. 33. № 4. P. 1673.
  14. Park S., Son G. Numerical Investigation of Acoustic Vaporization Threshold of Microdroplets // Ultrason. Sonochem. 2021. V. 71. P. 105361.
  15. Rapoport N. Phase-shift, Stimuli-responsive Perfluorocarbon Nanodroplets for Drug Delivery to Cancer // Wiley Interdiscip Rev Nanomed Nanobiotecnol. 2012. V. 4. № 5. P. 492.
  16. Guedra M., Coulouvrat F. A Model for Acoustic Vaporization of Encapsulated Droplets // J. Acoust. Soc. Amer. 2015. V. 138. № 6. P. 3656.
  17. Lacour T., Brasier T., Coulouvrat F. Ultimate Fate of a Dynamical Bubble/Droplet System Following Acoustic Vaporization // Phys. Fluids. 2020. V. 32. P. 051702.
  18. Prosperetti A. Vapor Bubbles // Annu. Rev. Fluid Mech. 2017. V. 49. P. 221.
  19. Вараксин А.Ю. Гидрогазодинамика и теплофизика двухфазных потоков: проблемы и достижения // ТВТ. 2013. Т. 51. № 3. С. 421.
  20. Вараксин А.Ю. Двухфазные потоки с твердыми частицами, каплями и пузырями: проблемы и результаты исследований // ТВТ. 2020. Т. 58. № 4. С. 646.
  21. Губайдуллин Д.А., Никифоров А.А. Акустические волны в вязкоупругих пузырьковых средах // ТВТ. 2019. Т. 57. № 1. С. 150.
  22. Губайдуллин Д.А., Панин К.А., Федоров Ю.В. Акустика жидкости с покрытыми оболочкой каплями при наличии фазовых переходов // Изв. РАН. МЖГ. 2022. № 4. С. 41.
  23. Warnez M.T., Johnsen E. Numerical Modeling of Bubble Dynamics in Viscoelastic Media with Relaxation // Phys. Fluids. 2015. V. 27. P. 063103.
  24. Zilonova E., Solovchuk M., Sheu T.W.H. Bubble Dynamics in Viscoelastic Soft Tissue in High-intensity Focal Ultrasound Thermal Therapy // Ultrason. Sonochem. 2018. V. 40. P. 900.
  25. Zilonova E., Solovchuk M., Sheu T.W.H. Dynamics of Bubble-bubble Interactions Experiencing Viscoelastic Drag // Phys. Rev. E. 2019. V. 99. P. 023109.
  26. Губайдуллин Д.А., Федоров Ю.В. Акустические волны в жидкости с газовыми включениями, имеющими жидкую прослойку и вязкоупругую оболочку // ТВТ. 2021. Т. 59. № 4. С. 533.
  27. Yang H., Desyatov A.V., Cherkasov S.G., McConnell D.B. On the Fulfillment of the Energy Conservation Law in Mathematical Models of Evolution of Single Spherical Bubble // Int. J. Heat Mass Transfer. 2008. V. 51. P. 3623.
  28. Десятов А.В., Ильмов Д.Н., Кубышкин А.П., Черкасов С.Г. Математическое моделирование эволюции одиночного сферического парового пузырька на основе гомобарической модели // ТВТ. 2011. Т. 49. № 3. С. 436.
  29. Ильмов Д.Н., Черкасов С.Г. Теплофизические процессы при сжатии парового пузырька в жидком углеводороде на основе гомобарической модели // ТВТ. 2012. Т. 50. № 5. С. 676.
  30. Ильмов Д.Н., Филатов Н.И., Черкасов С.Г. Сжатие паровых включений в жидком водороде // Тепловые процессы в технике. 2015. № 8. С. 350.
  31. Hao Y., Prosperetti A. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields // Phys. Fluids. 1999. V. 11. P. 2008.
  32. Десятов А.В., Ильмов Д.Н., Черкасов С.Г. Математическое моделирование эволюции одиночного сферического парового пузырька при его сжатии внешним давлением // ТВТ. 2008. Т. 46. № 1. С. 92.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (82KB)
3.

下载 (47KB)
4.

下载 (72KB)
5.

下载 (83KB)
6.

下载 (161KB)

版权所有 © Д.А. Губайдуллин, Ю.В. Федоров, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».