Механизмы формирования поверхностного нанорельефа при лазерной абляции

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Рассмотрены два механизма формирования поверхностного нанорельефа на металлической подложке при лазерной абляции, в основе которых лежат теория зародышеобразования при кристаллизации и резонансно-волновая теория капиллярно-деформационных процессов. С помощью экспериментальных примеров показано, что оба этих механизма не только не противоречат, но и дополняют друг друга. На основе иерархии характерных времен проанализировано влияние энергетических параметров лазерных импульсов на размеры образовавшихся наноструктур.

Full Text

Restricted Access

About the authors

П. С. Кулешов

Центральный институт авиационного моторостроения им. П.И. Баранова; Московский физико-технический институт (национальное исследовательское учреждение)

Author for correspondence.
Email: kuleshovps@yandex.ru
Russian Federation, Москва; Москва

С. И. Миколуцкий

Институт электрофизики и электроэнергетики РАН

Email: mikolserg@mail.ru
Russian Federation, Санкт-Петербург

Ю. В. Хомич

Институт электрофизики и электроэнергетики РАН

Email: kuleshovps@yandex.ru
Russian Federation, Санкт-Петербург

References

  1. Настулявичус А.А., Смирнов Н.А., Кудряшов С.И. и др. Получение наночастиц из тонких пленок серебра при воздействии лазерных импульсов в воздухе // Квантовая электроника. 2018. Т. 48. № 3. С. 251.
  2. Миколуцкий С.И., Хомич Ю.В. Влияние лазерного УФ-излучения наносекундной длительности на структуру и адгезионные свойства металлов и сплавов // ФММ. 2021. Т. 122. № 2. С. 159.
  3. Новиков И.А., Ножницкий Ю.А., Шибаев С.А. Мировой опыт в исследовании и применении технологического процесса лазерной ударной обработки металлов (обзор) // Авиационные двигатели. 2022. № 2(15). С. 59.
  4. Ионин A.A., Кудряшов С.И., Левченко А.О. и др. Гидродинамическая неустойчивость и самоорганизация субмикронного рельефа поверхности металлов при фемтосекундном лазерном облучении в жидкости // Письма в ЖЭТФ. 2017. Т. 106. Вып. 4. С. 247.
  5. Kirichenko N.A., Barmina E.V., Shafeev G.A. Theoretical and Experimental Investigation of the Formation of High Spatial Frequency Periodic Structures on Metal Surfaces Irradiated by Ultrashort Laser Pulses // Phys. Wave Phenom. 2018. V. 26. № 4. P. 264.
  6. Ганин Д.В., Миколуцкий С.И., Токарев В.Н., Хомич В.Ю., Шмаков В.А., Ямщиков В.А. Образование микронных и субмикронных структур на поверхности диоксида циркония при наносекундном лазерном воздействии // Квантовая электроника. 2014. Т. 44. № 4. С. 317.
  7. Пячин С.А., Пугачевский М.А. Новые технологии получения функциональных наноматериалов: лазерная абляция, электроискровое воздействие. Хабаровск, 2013. 38 с.
  8. Струлева Е.В., Комаров П.С., Ашитков С.И. Поведение тантала вблизи критической точки при фемтосекундном лазерном нагреве // ТВТ. 2021. T. 59. № 1. С. 148.
  9. Струлева Е.В., Комаров П.С., Ромашевский С.А., Евлашин С.А., Ашитков С.И. Фемтосекундная лазерная абляция железа // ТВТ. 2021. T. 59. № 5. С. 663.
  10. Хомич В.Ю., Ямщиков В.А. Основы создания систем электроразрядного возбуждения мощных CO2-, N2- и F2-лазеров. М.: Физматлит, 2014. 168 с.
  11. Хомич В.Ю., Шмаков В.А. Механизмы и модели прямого лазерного наноструктурирования материалов // УФН. 2015. Т. 185. С. 489.
  12. Варюхин А.Н., Захарченко В.С., Рахманкулов Д.Я. и др. Традиционные, гибридные и электрические силовые установки самолетов местных воздушных линий // Авиационные двигатели. 2022. № 1(14). С. 19.
  13. Кулешов П.С., Кузнецов А.М., Кулешова Ю.Д. Диспергация металлических нанопленок при лазерном сканировании // Вестн. МГОУ. Сер. Физика‒математика. 2022. № 1. С. 41.
  14. Миколуцкий С.И., Шмаков В.А., Хомич В.Ю., Ямщиков В.А. Зарождение и рост наноструктур на поверхности твердого тела, оплавленного лазерным импульсом // Российские нанотехнологии. 2011. Т. 6. № 11–12. С. 65.
  15. Токарев В.Н., Хомич В.Ю., Шмаков В.А., Ямщиков В.А. Возможность прямого лазерного наноструктурирования поверхности без оплавления материала // ФХОМ. 2008. № 4. С. 15.
  16. Хомич В.Ю., Шмаков В.А. Образование периодических наноразмерных структур на поверхности твердых тел при фазовых и структурных превращениях // Докл. РАН. 2012. Т. 446. № 3. С. 276.
  17. Лапшин К.Э., Обидин А.З., Токарев В.Н., Хомич В.Ю., Шмаков В.А., Ямщиков В.А. Прямое лазерное наноструктурирование поверхности алмазных пленок и керамики нитрида кремния наносекундными импульсами излучения F2-лазера // Российские нанотехнологии. 2007. № 11–12. С. 50.
  18. Emel’yanov V.I. Kuramoto-Sivashinsky Equation for Modulation of Surface Relief of Molten Layer and Formation of Surface Periodic Microstructures under Pulsed Laser Irradiation of Solids // Las. Phys. 2011. V. 21. Is. 1. P. 222.
  19. Иногамов Н.А., Жаховский В.В., Хохлов В.А. Динамика абляции золота в воду // ЖЭТФ. 2018. Т. 154. № 1(7). С. 92.
  20. Inogamov N.A., Khokhlov V.A., Petrov Yu.V., Zhak-hovsky V.V. Hydrodynamic and Molecular-dynamics Modeling of Laser Ablation in Liquid: from Surface Melting Till Bubble Formation // Opt. Quantum Electron. 2020. V. 52. № 2. Art. 63. 24 pp.
  21. Хомич В.Ю., Шмаков В.А. Образование наноструктур на поверхности твердых тел при лазерном плавлении // Докл. РАН. 2011. Т. 438. № 4. С. 460.
  22. Кулешов П.С. О диспергировании наночастиц алюминия // Горение и взрыв. 2019. T. 12. № 3. С. 118.
  23. Кулешов П.С., Кобцев В.Д. Распределение кластеров алюминия и их воспламенение в воздухе при диспергации наночастиц алюминия в ударной волне // ФГВ. 2020. Т. 56. № 5. С. 80.
  24. Гуренцов Е.В., Кулешов П.С., Михеева Е.Ю. К вопросу об аномальном поведении оптической плотности железных наночастиц при их нагреве ударной волной // ТВТ. 2022. T. 60. № 2. С. 213.
  25. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Учеб. пособ. Т. 6. Гидродинамика. 3-е изд., перераб. М.: Наука, 1986. 738 с.
  26. Серков А.А., Кузьмин П.Г., Раков И.И., Шафеев Г.А. Влияние лазерного пробоя на фрагментацию наночастиц золота в воде // Квантовая электроника. 2016. Т. 46. № 8. С. 713.
  27. Красильников В.А., Крылов В.В. Введение в физическую акустику: учеб. / Под ред. Красильникова В.А. М.: Наука, 1984. 400 с.
  28. Физические величины. Спр. / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the capillary mechanism of interaction of a laser pulse with a metal substrate and the choice of the resonator scale s (length of the melt pool): (a) – formation of a gas cavern and a metal melt of depth under the action of a laser pulse, (b) – formation of standing deformation waves under the action of a collapsing gas cavern, (c) – amplification of standing capillary waves on the surface of the melt by deformation waves, (d) – solidification of capillary waves and formation of a surface relief.

Download (256KB)
3. Fig. 2. Scheme of formation of capillary nanorelief with characteristic spatial period λH during formation of a solid crust of crystals of radius Rz above the melt.

Download (215KB)
4. Fig. 3. Schematic hierarchy of characteristic times during the formation of a nanorelief on a substrate by laser ablation in the case of the same diameter of the laser beams: (a) – for a short laser pulse [2], (b) – for a long laser pulse [7]; tc – cavern collapse time, tk – capillary oscillation time, τ – laser radiation supply time, tz – time of crystalline nucleus formation.

Download (36KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».