Зависимость эффективной теплопроводности гранитов от давления и температуры

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

На основании серии экспериментальных данных предлагается однопараметрическое описание температурно-барической зависимости эффективной теплопроводности гранитов в зависимости от ее значения при одной фиксированной температуре и атмосферном давлении. Предложенное описание довольно хорошо согласуется с экспериментальными данными в достаточно широком температурно-барическом диапазоне при отсутствии необратимых изменений в образцах в результате термобарического воздействия.

Sobre autores

А. Аливердиев

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН; Институт физики ДФИЦ РАН

Autor responsável pela correspondência
Email: aliverdi@mail.ru
Rússia, Махачкала; Махачкала

Р. Алиев

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН; Дагестанский государственный технический университет

Email: aliverdi@mail.ru
Rússia, Махачкала; Махачкала

А. Амирова

Институт физики ДФИЦ РАН

Email: aliverdi@mail.ru
Rússia, Махачкала

В. Бейбалаев

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН; Дагестанский государственный университет

Email: aliverdi@mail.ru
Rússia, Махачкала; Махачкала

Б. Григорьев

ООО “Газпром ВНИИ ГАЗ”

Email: aliverdi@mail.ru
Rússia, Развилка, Московская обл.

Ю. Заричняк

Национальный исследовательский университет информационных технологий, механики и оптики

Email: aliverdi@mail.ru
Rússia, Санкт-Петербург

М. Эфендиева

Дагестанский государственный университет

Email: aliverdi@mail.ru
Rússia, Махачкала

Bibliografia

  1. Norden B., Förster A., Förster H.-J., Fuchs S. Temperature and Pressure Corrections Applied to Rock Thermal Conductivity: Impact on Subsurface Temperature Prognosis and Heat-flow Determination in Geothermal Exploration // Geothermal Energy. 2020. V. 8. P. 1.
  2. Miranda M.M., Márquez M.I.V., Raymond J., Dezayes C. A Numerical Approach to Infer Terrestrial Heat Flux from Shallow Temperature Profiles in Remote Northern Regions // Geothermics. 2021. V. 93. P. 102064.
  3. Алишаев М.Г., Аливердиев А.А., Бейбалаев В.Д. Проблема доставки скрытой теплоты фазового перехода пара в пласт // ТВТ. 2023. Т. 61. № 6. С. 915.
  4. Furlong K.P., Chapman D.S. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere // Annu. Rev. Earth Planet. Sci. 2013. V. 41. P. 385.
  5. Annen C., Blundy J.D., Sparks R.S.J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones // J. Petrol. 2005. V. 47. P. 505.
  6. Nabelek P.I., Whittington A.G., Hofmeister A.M. Strain Heating as a Mechanism for Partial Melting and Ultrahigh Temperature Metamorphism in Convergent Orogens: Implications of Temperature Dependent Thermal Diffusivity and Rheology // J. Geophys. Res.: Solid Earth. 2010. V. 115. № B12. P. B12417.
  7. Whittington A.G., Hofmeister A.M., Nabelek P.I. Temperature-dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism // Nature. 2009. V. 458. P. 319.
  8. Fu H., Zhang B., Ge J., Xiong Z., Zhai Sh., Shan Sh., Li H. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283–988 K and 0.3–1.5 GPa // Am. Mineral. 2019. V. 104. № 11. P. 1533.
  9. Chopraa N., Raya L., Deyb S., Mitrac A. Thermal Conductivity, Density, Petrological, and Geochemical Characteristics of Granitoids from Singhbhum Craton, Eastern India // Geothermics. 2020. V. 87. P. 101855.
  10. Эмиров С.Н., Рамазанова Э.Н. Теплопроводность песчаников в условиях высоких давлений и температур // ТВТ. 2007. Т. 45. № 3. C. 359.
  11. Emirov S.N., Aliverdiev A.A., Zarichnyak Y.P., Emirov R.M. Studies of the Effective Thermal Conductivity of Sandstone under High Pressure and Temperature // Rock Mech. Rock Eng. 2021. V. 54. P. 3165.
  12. Emirov S.N., Aliverdiev A.A., Beybalaev V.D., Amirova A.A. On the Temperature and Pressure Dependences of the Effective Thermal Conductivity of Granites // Thermal Sci. 2021. V. 25. № 4A. P. 2493.
  13. Kant M.A., Ammann J., Rossi E., Madonna C., Höser D., von Rohr Ph.R. Thermal Properties of Central Aare Granite for Temperatures up to 500oC: Irreversible Changes due to Thermal Crack Formation // Geophys. Res. Lett. 2017. V. 44. № 2. P. 771.
  14. Horai K., Susaki J. The Effect of Pressure on Thermal Conductivity of Silicate Rocks up 12 kbar // Phys. Earth Planet. Inter. 1989. V. 55. № 3–4. P. 292.
  15. Miao S.Q., Li H.P., Chen G. Temperature Dependence of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity for Several Types of Rocks // J. Therm. Anal. Calorim. 2014. V. 115. № 2. P. 1057.
  16. Miranda M.M., Matos C.R., Rodrigues N.V., Pereira A.J.S.C., Costa J.J. Effect of Temperature on the Thermal Conductivity of a Granite with High Heat Production from Central Portugal // J. Iberian Geology. 2019. V. 45. № 1. P. 147.
  17. Sun Q., Zhang W., Zhu Y., Huang Z. Effect of High Temperatures on the Thermal Properties of Granite // Rock Mech. Rock Eng. 2019. V. 52. № 8. P. 2691.
  18. Zhao X.G., Zhao Z., Guo Z., Cai M., Li X., Li P.F., Chen L., Wang J. Influence of Thermal Treatment on the Thermal Conductivity of Beishan Granite // Rock Mech. Rock Eng. 2018. V. 51. № 7. P. 2055.
  19. Shen A.H., Bassett W.A., Chou I.-M. The α–β Quartz Transition at High Temperatures and Pressures in a Diamond–Anvil Cell by Laser Interferometry // Am. Mineral. 1993. V. 78. № 7–8. P. 694.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».