Численное и экспериментальное исследование динамики образования свч-разряда с безыскровой лазерной инициацией
- Authors: Renev M.E.1, Dobrov Y.V.1, Osipov N.D.1, Khoronzhuk R.S.1, Mashek I.C.1, Lashkov V.A.1
-
Affiliations:
- Saint Petersburg State University, Russia
- Issue: Vol 63, No 2 (2025)
- Pages: 163-174
- Section: Plasma Investigations
- URL: https://journal-vniispk.ru/0040-3644/article/view/316265
- DOI: https://doi.org/10.31857/S0040364425020016
- ID: 316265
Cite item
Abstract
About the authors
M. E. Renev
Saint Petersburg State University, Russia
Email: renevme@mail.ru
Y. V. Dobrov
Saint Petersburg State University, Russia
N. D. Osipov
Saint Petersburg State University, Russia
R. S. Khoronzhuk
Saint Petersburg State University, Russia
I. C. Mashek
Saint Petersburg State University, Russia
V. A. Lashkov
Saint Petersburg State University, Russia
References
- Bletzinger P., Ganguly B.N., Wie D.V., Garscadden A. Plasmas in High Speed Aerodynamics // J. Phys. D: Appl. Phys. 2005. V. 38. № 4. P. R33.
- Fomin V.M., Tretyakov P.K., Taran J.-P. Flow Control Using Various Plasma and Aerodynamic Approaches (Short Review) // Aerospace Sci. Technol. 2004. V. 8. № 5. P. 411.
- Knight D. Survey of Aerodynamic Drag Reduction at High Speed by Energy Deposition // J. Propuls. Power. 2008. V. 24. № 6. P. 1153.
- Russell A., Zare-Behtash H., Kontis K. Joule Heating Flow Control Methods for High-speed Flows // J. Electrostat. 2016. V. 80. P. 34.
- Starikovskiy A.Y., Aleksandrov N.L. Gasdynamic Flow Control by Ultrafast Local Heating in a Strongly Nonequilibrium Pulsed Plasma // Plasma Phys. Rep. 2021. V. 47. № 2. P. 148.
- Knight D., Kianvashrad N. Review of Energy Deposition for High-speed Flow Control // Energies. 2022. V. 15. № 24. P. 9645.
- Azarova O.A., Kravchenko O.V. The Use of Spatially Multi-component Plasma Structures and Combined Energy Deposition for High-speed Flow Control: A Selective Review // Energies. 2024. V. 17. № 7. P. 1632.
- Kolesnichenko Yu., Brovkin V., Azarova O., Grudnitsky V., Lashkov V., Mashek I. Microwave Energy Release Regimes for Drag Reduction in Supersonic Flows // 40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV, USA: American Institute of Aeronautics and Astronautics, 2002.
- Azarova O.A. Generation of Richtmyer–Meshkov and Secondary Instabilities During the Interaction of an Energy Release with a Cylinder Shock Layer // Aerospace Sci. Technol. 2015. V. 42. P. 376.
- Dobrov Y.V., Lashkov V.A., Mashek I.Ch., Khoron-zhuk R.S. Investigation of Heat Flux on Aerodyna- mic Body in Supersonic Gas Flow with Local Energy Deposition // 8th Polyakhov’s Reading: Proc. Int. Sci. Conf. on Mechanics. Saint Petersburg, Russia, 2018. P. 050009.
- Dobrov Y.V., Renev M.E., Lashkov V.A., Mashek I.Ch., Khoronzhuk R.S. Heat Flux on Streamlined Body Surface after Local Energy Input // J. Phys.: Conf. Ser. 2021. V. 1959. № 1. P. 012016.
- Anderson K., Knight D.D. Interaction of Heated Fi-laments with a Blunt Cylinder in Supersonic Flow // Shock Waves. 2011. V. 21. № 2. P. 149.
- Azarova O., Gvozdeva L. Control of Triple-shock Configurations in High-speed Flows over a Cylindrically Blunted Plate in Gases for Different Mach Numbers // Proc. Inst. Mech. Eng., Part G. 2018. V. 236. № 3. P. 448.
- Azarova O. Supersonic Flow Control Using Combined Energy Deposition // Aerospace. 2015. V. 2. № 1. P. 118.
- Азарова О.А., Грудницкий В.Г., Колесниченко Ю.Ф. Стационарное обтекание тел сверхзвуковым потоком газа, содержащим бесконечный тонкий разреженный канал // Матем. моделирование. 2006. Т. 18. № 1. С. 79.
- Golbabaei-Asl M., Knight D.D. Numerical Characterization of High-temperature Filament Interaction with Blunt Cylinder at Mach 3 // Shock Waves. 2014. V. 24. № 2. P. 123.
- Азарова О.А., Ерофеев А.В., Лапушкина Т.А. Сравнение плазменного и теплового воздействий на сверхзвуковое обтекание аэродинамического тела // Письма в ЖТФ. 2017. Т. 43. № 8. С. 93.
- Lashkov V.A., Karpenko A.G., Khoronzhuk R.S., Mashek I.Ch. Effect of Mach Number on the Efficiency of Microwave Energy Deposition in Superso- nic Flow // Phys. Plasmas. 2016. V. 23. P. 052305.
- Кnight D., Azarova O., Kolesnichenko Y. Drag Force Control Via Asymmetrical Microwave Filament Location in a Supersonic Flow // 6th Europ. Symp. on Aerothermodynamics for Space Vehicles. Versailles, France: European Space Agency, 2008. P. 1.
- Kolesnichenko Y., Brovkin V., Khmara D., Lashkov V., Mashek I., Rivkin M. Fine Structure of MW Discharge: Evolution Scenario // 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2003.
- Pai D.Z., Lacoste D.A., Laux C.O. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure – The Spark Regime // Plasma Sources Sci. Technol. 2010. V. 19. № 6. P. 065015.
- Лашков В.А., Добров Ю.В., Ренев М.Е., Машек И.Ч., Джайчибеков Н.Ж., Шалабаева Б.С. Исследование температурного поля газа в следе импульсного электрического разряда // ЖТФ. 2022. Т. 92. № 4. С. 547.
- Usoskin I.G., Desorgher L., Velinov P., Storini M., Flukiger E.O., Butikofer R., Kovaltsov G.A. Ionization of the Earth’s Atmosphere by Solar and Galactic Cosmic Rays // Acta Geophys. 2009. V. 57. № 1. P. 88.
- Сайфутдинов А.И. Гидродинамические и гибридные модели электрических разрядов в газах и их приложения. Дис. … докт. физ.-мат. наук. Казань: КАИ, 2023. 592 с.
- Bulat P.V., Grachev L.P., Esakov I.I., Ravaev A.A. Threshold Field That Separates Domains of Subcritical and Deeply Subcritical Microwave Discharges Ignited on a Dielectric Surface // Tech. Phys. 2019. V. 64. № 1. P. 56.
- Bychkov D.V., Grachev L.P., Esakov I.I. Deeply Undercritical Microwave Discharge Excited by the Field of a Quasi-optical Electromagnetic Beam in a Supersonic Air Jet // Tech. Phys. 2009. V. 54. № 3. P. 365.
- Bulat P., Chernyshov P., Esakov I., Grachev L., Lavrov P. Multi-point Ignition of Air/Fuel Mixture by the Initiated Subcritical Streamer Discharge // Acta Astronautica. 2022. V. 194. P. 504.
- Афанасьев С.А., Бровкин В.Г., Колесниченко Ю.Ф. Инициация СВЧ-разряда посредством лазерной искры // Письма в ЖТФ. 2010. Т. 36. № 14. P. 73.
- Афанасьев С.А., Бровкин В.Г., Колесниченко Ю.Ф., Машек И.Ч. Влияние газодинамических процессов на структуру и пороги СВЧ-разряда при инициации лазерной искрой // Письма в ЖТФ. 2011. Т. 37. № 15. P. 40.
- Khoronzhuk R.S., Karpenko A.G., Lashkov V.A., Potapenko D.P., Mashek I.Ch. Microwave Discharge Initiated by Double Laser Spark in a Supersonic Airflow // J. Plasma Phys. 2015. V. 81. № 3. 905810307.
- Brovkin V., Afanas’ev S., Khmara D., Kolesnichenko Y. Experimental Investigation of Combined Laser-DC-MW Discharges // 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2006.
- Kolesnichenko Y., Khmara D., Afanas’ev S. Optimization of Laser-pulse-controlled MW Energy Deposition // 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2007.
- Saifutdinov A.I., Kustova E.V. Dynamics of Plasma Formation and Gas Heating in a Focused-microwave Discharge in Nitrogen // J. Appl. Phys. 2021. V. 129. № 2. P. 023301.
- Гончаренко А.М. Гауссовы пучки света. Минск: Наука и техника, 1977. 144 c.
- Федоров В.Ю., Кандидов В.П. Нелинейно-оптическая модель воздушной среды в задаче о филаментации фемтосекундных лазерных импульсов различной длины волны // Оптика и спектроскопия. 2008. Т. 105. № 2. С. 306.
- Itikawa Y., Ichimura A. Cross Sections for Collisions of Electrons and Photons with Atomic Oxygen // J. Phys. Chem. Ref. Data. 1990. V. 19. № 3. P. 637.
- Lee L.C., Smith G.P. Photodissociation and Photodetachment of Molecular Negative Ions. VI. Ions in O2/CH4/H2O Mixtures from 3500 to 8600 Å // J. Chem. Phys. 1979. V. 70. № 4. P. 1727.
- Райзер Ю.П. Физика газового разряда. 3-e изд. перераб. и доп. Долгопрудный: Интеллект, 2009. 736 c.
Supplementary files
