PRIMENENIE MIKROVOLNOVOY PLAZMY DLYa SINTEZA MIKROSTRUKTURIROVANNYKh OKSIDNYKh MATERIALOV
- 作者: Gadzhiev M.K.1, Muslimov A.E1, Krasnova V.V1, Yusupov D.I1, Antipov S.N1, Tyuftyaev A.S1
-
隶属关系:
- 期: 卷 63, 编号 3 (2025)
- 页面: 438-442
- 栏目: Short Communications
- URL: https://journal-vniispk.ru/0040-3644/article/view/357657
- DOI: https://doi.org/10.7868/S3034610X25030146
- ID: 357657
如何引用文章
详细
参考
- Mohamed K.M., Benito J.J., Vijaya J.J., Bououdina M. Recent Advances in ZnO-based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-biodegradable Medicines // Crystals. 2023. V. 13. P. 329.
- Kabir R., Saifullah M.A.K., Ahmed A.Z., Masum S.M., Molla M.A.I. Synthesis of N-doped ZnO Nanocomposites for Sunlight Photocatalytic Degradation of Textile Dye Pollutants // J. Compos. Sci. 2020. V. 4(2). P. 49.
- Muslimov A.E., Tsarenko A.D., Lavrikov A.S., Ul'yankina A.A., Kanevskii V.M. Vliyanie morfologicheskikh i strukturnykh parametrov tetrapodov ZnO na ikh aktivnost' v reaktsii fotokataliticheskoi degradatsii tsiprofloksatsina // Pis'ma v ZhTF. 2023. T. 49. № 16. S. 8.
- Shurbaji S., Huong P.T., Altahtamouni T.M. Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater // Catalysts. 2021. V. 11(4). P. 437.
- Ren G., Han H., Wang Y., Liu S., Zhao J., Meng X., Li Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review // Nanomaterials. 2021. V. 11(7). P. 1804.
- Herrmann J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants // Catalysis Today. 1999. V. 53(1). P. 115.
- Didenko A.N., Zverev B.V. SVCh-energetika. M.: Nauka, 2000. 264 s.
- Tikhonov V.N., Aleshin S.N., Ivanov I.A., Tikhonov A.V. The Low-cost Microwave Plasma Sources for Science and Industry Applications // J. Phys.: Conf. Ser. 2017. V. 927. P. 012067.
- Ivanov I.A., Tikhonov V.N., Tikhonov A.V. Microwave Complex for Obtaining Low-temperature Plasma at Atmospheric Pressure // J. Phys.: Conf. Ser. 2019. V. 1393. P. 012042.
- Tikhonov V.N., Ivanov N.A., Tikhonov A.V. Nedorogie SVCh-plazmotrony dlya nauki i promyshlennosti // Prikladnaya fizika. 2018. № 4. S. 123.
- Tikhonov V.N., Ivanov N.A., Kryukov A.E., Tikhonov A.V. Byudzhetnye generatory dlya mikrovolnovykh plazmotronov // Prikladnaya fizika. 2015. № 5. S. 102.
- Chepelev V.M., Chistoliniy A.V., Khromov M.A., Antipov S.N., Gaddhiev M.K. Thermocouple and Electric Probe Measurements in a Cold Atmospheric-pressure Microwave Plasma Jet // J. Phys.: Conf. Ser. 2020. V. 1556. P. 012091.
- Baltii L.M., Batensh V.M., Desyatkin N.N., Lebedeva V.R., Tsemko N.N. Statsionarnyi SVCh-razryad v azote pri atmosfernom davlenii // TVT. 1971. T. 9. № 6. S. 1105.
- Chen C.J., Li S.Z. Spectroscopic Measurement of Plasma Gas Temperature of the Atmospheric-pressure Microwave Induced Nitrogen Plasma Torch // Plasma Sources Sci. Technol. 2015. V. 24(3). P. 035017.
- Tsytovich V.N. Plazmenno-pylevye kristally, kapli i oblaka // UFN. 1997. T. 167. № 1. S. 57.
- Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.N., Petrov O.F. Pylevaya plazma // UFN. 2004. T. 174. № 5. S. 495.
补充文件

