Двухмерное течение в эмульсии, содержащей активные броуновские частицы
- Autores: Kiverin A.D.1, Yakovenko I.S.1
-
Afiliações:
- United Institute of High Temperatures of the Russian Academy of Sciences
- Edição: Volume 63, Nº 1 (2025)
- Páginas: 68-73
- Seção: Heat and Mass Transfer and Physical Gasdynamics
- URL: https://journal-vniispk.ru/0040-3644/article/view/320069
- DOI: https://doi.org/10.31857/S0040364425010108
- ID: 320069
Citar
Resumo
In this work, a two-phase hydrodynamic model is proposed to describe flows occurring in a thin layer of emulsion containing active Brownian particles (drops). The peculiarities of the two-dimensional flows formed in the emulsion are demonstrated. It is shown that during the collective motion of active droplets, the kinetic energy is distributed over spatial scales according to patterns typical of developed turbulent flows, including the transfer of energy to large scales and the formation of large-scale vortex structures. The kinetic energy transferred from droplets to the liquid phase is concentrated in short-wavelength disturbances that determine the mechanism of changing the direction of droplet motion in addition to their diffusive rotation and turning due to repulsion when colliding with other droplets.
Sobre autores
A. Kiverin
United Institute of High Temperatures of the Russian Academy of Sciences
Email: alexeykiverin@ihed.ras.ru
Moscow, Russia
I. Yakovenko
United Institute of High Temperatures of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: alexeykiverin@ihed.ras.ru
Moscow, Russia
Bibliografia
- Арансон И.С. Активные коллоиды // УФН. 2013. Т. 183. № 1. С. 87.
- Kichatov B., Korshunov A., Sudakov V. et al. Pattern Formation and Collective Effects During the Process of the Motion of Magnetic Nanomotors in Narrow Channels // Phys. Chem. Chem. Phys. 2023. V. 25. № 16. P. 11780.
- Lin R., Yu W., Chen X., Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy // Adv. Healthcare Mater. 2021. V. 10. № 1. P. 2001212.
- Yang Z., Snyder D., Sathyan A. et al. Smart Droplets Stabilized by Designer Surfactants: From Biomimicry to Active Motion to Materials Healing // Adv. Functional Mater. 2023. V. 33. № 52. P. 2306819.
- Васильев М.М., Алексеевская А.А., Косс К.Г. и др. Самоорганизация кластеров активных броуновских частиц в коллоидной плазме при воздействии лазерного излучения // ТВТ. 2023. Т. 61. № 6. С. 825.
- Dunkel J., Heidenreich S., Drescher K. et al. Fluid Dynamics of Bacterial Turbulence // Phys. Rev. Lett. 2013. V. 110. № 22. P. 228102.
- Kichatov B., Korshunov A., Sudakov V. et al. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing // ACS Appl. Mater. Interfaces. 2021. V. 13. № 32. P. 38877.
- Petrov O.F., Statsenko K.B., Vasiliev M.M. Active Brownian Motion of Strongly Coupled Charged Grains Driven by Laser Radiation in Plasma // Sci. Rep. 2022. V. 12. № 1. P. 8618.
- Bárdfalvy D., Nordanger H., Nardini C. et al. Particle-resolved Lattice Boltzmann Simulations of 3-dimensional Active Turbulence // Soft Matter. 2019. V. 15. P. 7747.
- Slomka J., Dunkel J. Generalized Navier–Stokes Equations for Active Suspensions // Eur. Phys. J.: Spec. Top. 2015. V. 224. № 7. P. 1349.
- Вараксин А.Ю. Двухфазные потоки с твердыми частицами, каплями и пузырями: проблемы и результаты исследований // ТВТ. 2020. Т. 58. № 4. С. 646.
- Lisin E., Vaulina O., Lisina I., Petrov O. Active Brow-nian Particle in Homogeneous Media of Different Viscosities: Numerical Simulations // Phys. Chem. Chem. Phys. 2021. V. 23. № 30. P. 16248.
- McGrattan K., McDermott R., Hostikka S. et al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model: Tech. Rep. NIST Special Publication 1018-1 / Gaithersburg, MD: U.S. Department of Commerce, National Institute of Standards and Technology, 2019. P. 173.
- Kiverin A., Melnikova K., Yakovenko I. Dynamic Loads Induced by Near-limit Turbulent Hydrogen-air Combustion Inside a Confinement // Process Saf. Environ. Prot. 2024. V. 189. P. 728.
- Яковенко И.С., Киверин А.Д. Развитие нестационарных процессов горения во вспененных эмульсиях // ТВТ. 2022. Т. 60. № 6. С. 928.
- Kraichnan R.H. Inertial Ranges in Two-dimensional Turbulence // Phys. Fluids. 1967. V. 10. № 7. P. 1417.
- Verma M.K., Donzis D. Energy Transfer and Bottleneck Effect in Turbulence // J. Phys. A: Math. Theor. 2007. V. 40. № 16. P. 4401.
Arquivos suplementares
